
USOO7737723B1

(12) United States Patent (10) Patent No.: US 7,737,723 B1
Tang et al. (45) Date of Patent: *Jun. 15, 2010

(54) TRANSPARENT FIELD RECONFIGURATION 6,624,656 B1 9, 2003 Fox et al.
FOR PROGRAMMABLE LOGIC DEVICES 6,717.433 B2 * 4/2004 Barbier et al. 326, 16

6,851,047 B1 2/2005 Fox et al.

(75) Inventors: Howard Tang, San Jose, CA (US); Jack 6,870,397 B1 3/2005 Fox et al.
T. Wong, Fremont, CA (US); Clark 6,924,663 B2 8, 2005 Masui et al.

O O 7,088,132 B1 8/2006 Tang et al.
Wilkinson, Austin, TX (US); Jeffrey S. T.O95.247 B1 8, 2006 T W-1 - ang et al.
Byrne, Portland, OR (US) 7,099.227 B1 8/2006 Zhou

7,102,555 B2 * 9/2006 Collins et al. 341,120
(73) Assignee: Lattice Semiconductor Corporation, 7,1 11,217 B1 * 9/2006 Schultz....................... 714/727

Hillsboro, OR (US) 7,180,776 B1 2/2007 Wennekamp et al.
7,199,608 B1 4/2007 Trimberger

(*) Notice: Subject to any disclaimer, the term of this 7,218,137 B2 5/2007 Vadi et al.
patent is extended or adjusted under 35 7.366,306 B1 4/2008 Trimberger
U.S.C. 154(b) by 0 days. 7,373,668 B1 5/2008 Trimberger

7,375,549 B1 5/2008 Tang et al.
This patent is Subject to a terminal dis- 7.406,642 B1 7/2008 Lau 714/727

7,480,843 B1 1/2009 Jacobson 714/725 lai
Ca1 7,538,574 B1 5/2009 Tang et al.

7,554,358 B1 6/2009 Tang et al.
(21) Appl. No.: 12/467,800 7,652,500 B1 1/2010 Tang et al.

(22) Filed: May 18, 2009 (Continued)

Related U.S. Application Data OTHER PUBLICATIONS

(63) Continuation of application No. 1 1/293,941, filed on Lattice Semiconductor Corporation, “LatticeXPFamily Data Sheet.”
Dec. 5, 2005, now Pat. No. 7,538,574. Version 01.2, Feb. 2005, available at www.latticesemi.com.

(Continued)
(51) Int. Cl.

HO3K 9/73 (2006.01) Primary Examiner Vibol Tan
(52) U.S. Cl. 326/38: 326/39; 326/40
(58) Field of Classification Search 326/38 41 (57) ABSTRACT

See application file for complete search history. In accordance with an embodiment of the present invention, a
(56) References Cited programmable logic device (PLD. Such as a field program

mable gate array (FPGA)) includes a plurality of input/output
U.S. PATENT DOCUMENTS blocks adapted to precondition registers within the program

5,844.422 A 12/1998 Trimberger et al. mable logic device with desired signal values prior to release
6,028,449 A 2/2000 Schmitt of control of the input/output blocks to user-defined logic
6,218,858 B1 4/2001 Menon et al. provided by a reconfiguration.
6,507,211 B1 1/2003 Schultz
6,573,748 B1 6/2003 Trimberger 17 Claims, 7 Drawing Sheets

Operation Flow
302 JTAG

Background

User Software Stort
for Programming

Poss/Foil Bes Synd Note:Device Stoys Programming
User Software Programming In User Mode.

User Software Start
for Leave Alone 04 Optional Feature

- JTAGBSCAN
Alter Some Or All IO States

506 JTAGBSCAN

JTAG Refresh
O

Note: After The Operation, Posing
Device is in User Mode Pin User Software With 10 Remaining Clamped.

User Software Stort 310
for Know State Exit ------99------- r

Release IO To User Logic Pre-Condition Internal Register TAGBSCAN
- - - - - -

? TAGBYPASS
300

US 7,737,723 B1
Page 2

U.S. PATENT DOCUMENTS

2002fO163840 A1 11, 2002
2004/OO25086 A1 2, 2004
2005/0O83743 A1 4, 2005
2005/02483.64 A1 11, 2005
2006, OO67102 A1 3, 2006

Hiraki et al.
Gorday et al.
Andrei et al.
Vadi et al.
Yamada et al.

OTHER PUBLICATIONS

Lattice Semiconductor Corporation, LatticeXP Family Data Sheet,
Version 01.2, Feb. 2005, 77 pages.
Altera R, Max II Device Handbook, www.altera.com, M115V 1-1.7,
330 pages, no date.
Actel Corporation, Pro ASICE Flash Family FPGAs, ARM7TM Soft
IP Support in Pro ASIC3E ARM7-Ready Device, Oct. 2005, 166
pageS.
U.S. Appl. No. 10/809,658 Howard Tang.
U.S. Appl. No. 1 1/243,255 Howard Tang.
U.S. Appl. No. 1 1/293,941 Howard Tang.

Altera Corporation, "Max II Device Handbook.” Version 1.1, Dec. U.S. Appl. No. 1 1/350,436. Howard Tang.
2004, available at www.altera.com.
Actel Corporation, “ProASIC3E Flash Family FPGAs.” Oct. 2005,
available at www.actel.com.

U.S. Appl. No. 1 1/397.985, filed Apr. 5, 2006, Fontana et al.

* cited by examiner

US 7,737,723 B1 Sheet 1 of 7

1

Jun. 15, 2010

102

U.S. Patent

4

OO C) Lae

§EN??L?L????L?D(?L?? OZ%§ %

NNS

%

3%.2% 2. NTZ 2

FIG. 1

FLASH MEMORY

Control Logic
FLASH MEMORY

2%

r

FIG 2

US 7,737,723 B1 Sheet 2 of 7 Jun. 15, 2010 U.S. Patent

+ — — — — — — — — — — — — — — — — — — —

US 7,737,723 B1 Sheet 3 of 7 Jun. 15, 2010 U.S. Patent

US 7,737,723 B1 Sheet 6 of 7 Jun. 15, 2010 U.S. Patent

9Sn4 pºuluuDuboudun

<<

Z09

909
on v- O

US 7,737,723 B1
1.

TRANSPARENT FELD RECONFIGURATION
FOR PROGRAMMABLE LOGIC DEVICES

RELATED APPLICATION DATA

This application is a continuation of U.S. application Ser.
No. 1 1/293,941, filed Dec. 5, 2005, which is incorporated by
reference in its entirety.

TECHNICAL FIELD

The present invention relates generally to electrical circuits
and, more particularly, to reconfiguration of programmable
logic devices.

BACKGROUND

A programmable logic device, such as field programmable
gate array (FPGA) or a complex programmable logic device
(CPLD), may be used in a variety of applications. A program
mable logic device (PLD) offers the advantage of being repro
grammable in the field (e.g., while on the circuitboard in its
operational environment).
A drawback of a conventional PLD is that, while being

programmed (which may take seconds to load an external
configuration bitstream), the PLD enters a sleep state, with its
input and output pins typically disabled (e.g., non-responsive
to input signals while providing indeterminate output sig
nals). If the PLD is in a critical path or is used to control
critical functions, these drawbacks may be unacceptable. Fur
thermore, glitches on the output signals provided by the PLD
during programming or after reconfiguration generally would
be unacceptable while the PLD is controlling critical func
tions. As a result, there is a need for improved programming
and configuration techniques for PLDS.

SUMMARY

In accordance with one embodiment of the present inven
tion, a programmable logic device includes a plurality of
input/output blocks having adapted to precondition registers
within the programmable logic device with desired signal
values prior to release of control of the input/output blocks to
user-defined logic provided by a reconfiguration; a plurality
of logic blocks; configuration memory cells adapted to store
first configuration data for configuration of the logic blocks
and the input/output blocks of the programmable logic
device; non-volatile memory adapted to store second con
figuration data and transfer the second configuration data to
the configuration memory cells for the reconfiguration of the
programmable logic device; and at least a first data port
adapted to receive commands for controlling the reconfigu
ration of the programmable logic device.
The scope of the invention is defined by the claims, which

are incorporated into this section by reference. A more com
plete understanding of embodiments of the present invention
will be afforded to those skilled in the art, as well as a real
ization of additional advantages thereof, by a consideration of
the following detailed description of one or more embodi
ments. Reference will be made to the appended sheets of
drawings that will first be described briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram illustrating an exemplary
programmable logic device in accordance with an embodi
ment of the present invention.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 2 shows a block diagram illustrating exemplary

implementation details for the programmable logic device of
FIG. 1 in accordance with an embodiment of the present
invention.

FIG.3 shows a flowchart illustrating exemplary operations
for the programmable logic device of FIG. 1 in accordance
with an embodiment of the present invention.

FIG. 4 shows a block diagram illustrating an exemplary
circuit implementation for a portion of the programmable
logic device of FIG. 1 in accordance with an embodiment of
the present invention.

FIG. 5 shows a block diagram illustrating an exemplary
circuit implementation for a portion of the programmable
logic device of FIG. 1 in accordance with an embodiment of
the present invention.

FIGS. 6-8 show block diagrams illustrating exemplary
operations associated with a reconfiguration for the program
mable logic device of FIG. 1 in accordance with an embodi
ment of the present invention.

Embodiments of the present invention and their advantages
are best understood by referring to the detailed description
that follows. It should be appreciated that like reference
numerals are used to identify like elements illustrated in one
or more of the figures.

DETAILED DESCRIPTION

FIG. 1 shows a block diagram illustrating an exemplary
programmable logic device (PLD) 100 in accordance with an
embodiment of the present invention. PLD 100 includes
input/output (I/O) blocks 102 and programmable logic blocks
104, which are used to provide I/O functionality (e.g., one or
more I/O and/or memory interface standards) and logic func
tionality (e.g., LUT-based logic), respectively, for PLD 100.
PLD 100 may also include one or more non-volatile memory
106 (e.g., EEPROM or flash memory), volatile memory 108
(e.g., block SRAM), and clock-related circuitry 110 (e.g.,
PLL circuits).
PLD 100 also includes one or more data ports 112 and/or

114, which for example may be used for programming PLD
100 (e.g., non-volatile memory 106 and/or configuration
memory, as explained further herein). For example, data port
112 may represent a programming port Such as a central
processing unit (CPU) port, also referred to as a peripheral
data port or a sysCONFIG programming port. Data port 114
may represent, for example, a programming port Such as a
joint test action group

(JTAG) port by employing standards such as Institute of
Electrical and Electronics Engineers (IEEE) 1149.1 or 1532
standards.

Non-volatile memory 106, if present, may be used to store
configuration data within PLD 100 for transfer to the configu
ration memory of PLD 100 upon power up or during recon
figuration of PLD 100. This may drastically reduce the time to
reconfigure PLD 100 relative to an external bitstream (e.g.,
reduce the time from seconds to microseconds for loading of
configuration data into the configuration memory).

Non-volatile memory 106 may also be used to provide
background programming functionality for PLD 100. For
example forbackground programming, PLD 100 may remain
in user mode, based on the configuration data stored in con
figuration memory within PLD 100, while non-volatile
memory 106 is programmed with new configuration data
(e.g., a new user defined pattern). Once the new configuration
data is stored in non-volatile memory 106, this data can be
transferred from non-volatile memory 106 to the configura
tion memory to reconfigure PLD 100, a process sometimes

US 7,737,723 B1
3

referred to as refresh. As explained further herein, the refresh
process can be initiated by a signal or instruction provided to
data port 112 or data port 114 (e.g., pulsing data port 112 or
providing a JTAG refresh instruction via data port 114). Fur
thermore, as explained further herein in accordance with one
or more embodiments of the present invention, full control of
the logical values of the output signals provided by PLD 100
during the refresh process can still be provided.
As a specific example, FIG. 2 shows a block diagram

illustrating a PLD 200, which provides exemplary implemen
tation details for PLD 100 of FIG. 1 in accordance with an
embodiment of the present invention. PLD 200 includes non
Volatile memory 106 (e.g., flash memory), configuration
memory cells 204, and control logic 206.

Configuration memory cells 204 (e.g., volatile SRAM cells
or other types of memory, such as fuses oranti-fuses) are used
in a conventional manner to store configuration data, which
determines the user defined functions of PLD 200 (e.g., deter
mines programmable functions of I/O blocks 102 and logic
blocks 104). Control logic 206 controls the internal transfer of
the configuration data from non-volatile memory 106 to con
figuration memory cells 204, as would be understood by one
skilled in the art.

It should be understood that flash memory represents an
exemplary type of memory for non-volatile memory 106, but
other types of non-volatile memory (e.g., EECMOS) that can
be reprogrammed once or repeatedly may be substituted for
non-volatile memory 106. Furthermore, either non-volatile
memory 106 or configuration memory cells 204 may be pro
grammed (i.e., receive and store information in its memory)
to store configuration data for PLD 200, but the device func
tionality of PLD 200 is determined by the information stored
in configuration memory cells 204. Thus, PLD 200 is config
ured (including reconfiguration or partial reconfiguration)
when information is programmed into configuration memory
cells 204.

It should also be understood, in accordance with one or
more embodiments of the present invention, that non-volatile
memory 106 and configuration memory cells 204 may each
be programmed (including reprogrammed) via data port 112
or data port 114, depending upon the desired application or
design requirements. Further details regarding programming
may be found in U.S. Pat. No. 6,828,823 and U.S. Patent
Publication No. 2005-0189962-A1, published Sep. 1, 2005.

In general, during programming of configuration memory
cells 204 and reconfiguration of the PLD (e.g., PLD 100), it
would be advantageous to continue to Support system opera
tion functions. However, conventional approaches typically
used an external bitstream to provide the configuration data
directly to the configuration memory of the PLD, while the
PLD’s output signals are tri-stated or held to logical high or
low values. In contrast, in accordance with one or more
embodiments of the present invention, techniques are dis
closed herein to use background programming to provide the
configuration data to the PLD and, during configuration, pro
vide desired PLD output signals that remain glitch-free dur
ing the transition from configuration to user mode of the PLD.

For example, FIG. 3 shows a flowchart 300 illustrating
exemplary reconfiguration operations for PLD 100 of FIG. 1
in accordance with an embodiment of the present invention.
As discussed further herein, the operations illustrated in flow
chart 300 may be controlled by software (e.g., user software)
or hardware, as illustrated in an exemplary fashion in FIG. 3
with the corresponding operation flow for the commands and
the exemplary software control indicators (user software
start).

5

10

15

25

30

35

40

45

50

55

60

65

4
For example, Lattice Semiconductor Corporations ispVM

software is a Windows-based tool set that facilitates the pro
gramming of their PLDs. The ispVM Embedded tool gener
ates C code that, when compiled for and executed on a wide
range of embedded processors, enables the programming of
the PLDs. Consequently, the ispVM software or other con
ventional PLD programming software can issue the program
ming commands directly, such as during prototyping, or gen
erate, for example, an industry-standard Serial Vector Format
(SVF) file for reconfiguration in the field. Thus, for example,
the SVF file may be used to control the background program
ming, leave alone operation, refresh process, and the known
state exit operation (e.g., create a delay period for users to
apply the vectors to precondition the registers), which are
described further herein.

In reference to FIG. 3, background programming is first
initiated (302), while the PLD remains in user mode operation
with the current configuration data. For example, background
programming of non-volatile memory 106 (flash memory)
with the new configuration data is performed as the PLD
operates based on current configuration data stored in con
figuration memory cells 204. The background programming
may be verified prior to initiating the capture of the I/O states
(e.g., current I/O values, such as logical high or low, high
impedance values, or sampled) at operation 304. Optionally,
the I/O states may be altered as desired by a user, as explained
further herein (e.g., via input paths through the boundary scan
cells by manipulating pins via an external device or through
JTAG).

Using the boundary scan cells at operation 306, the I/O
states are held at the captured or desired values and the PLD
is reconfigured or refreshed (308) by copying the configura
tion data from non-volatile memory 106 to configuration
memory cells 204. The reconfiguration may be initiated, for
example, by pulsing or toggling data port 112 or providing a
JTAG instruction (Refresh) to data port 114.
The refresh process may be verified prior to initiating the

release of the I/O to the newly configured user-defined logic
(operation 310). Optionally, internal registers within the I/O
or other portions of the PLD may be preconditioned with data
to prevent glitches from occurring during the transition to
user-defined logic control of the I/O (e.g., the data for pre
conditioning provided via input paths through the boundary
scan cells). After providing the JTAG instruction (e.g.,
BYPASS or EXIT EXTEST), the PLD is now configured and
operating based upon the new configuration data, with the I/O
output signals under control of the newly configured user
logic of the PLD. Furthermore, if the internal registers were
preconditioned, the logic outputs exit in the desired State
determined by the inputs to the user control logic.
The techniques illustrated may also be referred to herein by

the operations of “leave alone I/O and “known-state exit.”
The leave alone I/O operation refers to the ability to program
in background mode and, while the PLD is refreshed, hold the
state of the I/O output pins in a known logic State (e.g.,
generally operations 302 through 308 of flowchart 300). The
known state may be based on the I/O values captured or based
on a known system vector that is provided to set the I/O values
based on user-predefined settings. Thus, the leave alone I/O
allows critical signals (e.g., reset and power enable signals
provided by the PLD in a system) to not glitch and to not go
active (e.g., float or provide undesired values) while the PLD
is reconfigured.
The known state exit operation refers to the updating of

some or all of the internal register states with predefined
values (e.g., the optional portion of operation 310 offlowchart
300). The values may be provided via I/O pins and inputpaths

US 7,737,723 B1
5

through the boundary scan (BSCAN) cells (e.g., as discussed
in reference to FIGS. 4 and 5). This operation is useful when
the PLD logic that provides the value for the I/O pin may be
in a state that would cause the I/O pinto pass through a glitch
or inappropriate signal level (e.g., glitch or active level).
Thus, the PLD exits to user-defined operation after reconfigu
ration in a known logic state.
The leave alone operation may be implemented, for

example, by using the BSCAN cells within the PLD to cap
ture current I/O pin output states and/or optionally overlay
with a custom I/O vector to set desired I/O pin output values.
For example, FIGS. 4 and 5 show exemplary block diagram
implementations for BSCAN circuits 400 and 500, respec
tively, for I/O blocks 102 of PLD 100 of FIG. 1 in accordance
with an embodiment of the present invention.
BSCAN circuit 400 (BSCAN cell) illustrates that one or

more BSCAN registers may be used to store the sampled I/O
value to provide as an output signal via an I/O pin (e.g., using
the JTAG instruction SAMPLE provided via data port 114 to
place output states in BSCAN cell preload registers) and/or
overlay a custom vector of user-defined values to provide as
the output signal via the I/O pin (e.g., using the JTAG instruc
tion PRELOAD). If custom vector values are provided, these
can be preloaded into the PLDjust prior to the refresh process
(e.g., during operation 304 of flowchart 300). The I/O control
can then be transferred to BSCAN circuit 400 (e.g., by using
the JTAG instruction EXTEST), with the dotted path and bold
arrow illustrating I/O values provided to the I/O pin based on
custom vector values or captured I/O values.
BSCAN circuit 500 illustrates another exemplary circuit

implementation, in accordance with an embodiment of the
present invention, for a BSCAN cell. As an example, BSCAN
circuit 500 shows an exemplary inputpath 502 via the I/O pin,
where input path 502 is not blocked by BSCAN circuit 500
and is always available as an input path for providing data into
the PLD (e.g., before the refresh process to provide desired
I/O values or after the refresh process to precondition internal
registers with desired values). Consequently, data and other
information may be provided via the input path to user logic
and/or registers within the PLD (e.g., to provide values for the
known-state exit operation).

FIG. 5 further provides a table providing various multi
plexercontrol signal values (e.g., for control signals Mode 1.
Mode 2, and Mode 3) for corresponding JTAG instructions.
Note, for example, that input path 502 is always available
through a multiplexercontrolled by the Mode 2 control signal
for the exemplary JTAG instructions, except for the JTAG
INTEST instruction. Further additional details regarding
exemplary BSCAN circuits and operation may be found, for
example, in U.S. Pat. Nos. 6,304,099 and 6,356,107.

FIGS. 6-8 show block diagrams illustrating exemplary
operations associated with a reconfiguration for PLD 100 of
FIG. 1 in accordance with an embodiment of the present
invention. Specifically, FIGS. 6-8 show an exemplary
BSCAN circuit 602 (e.g., similar to BSCAN circuit 500) and
a portion of a user programmable logic area 604 of PLD 100.

For example, FIG. 6 shows PLD 100 operating in a user
mode of operation prior to the refresh operation. The logical
states stored in BSCAN circuit 602 may be unknown (or don’t
care state as indicated by the question mark) and a user
register 606 within logic area 604 may store a logical high
value (i.e., a “1”), which user register 606 provides to an I/O
pin 608, as shown by the dotted path. It should also be noted
that some fuses (e.g., configuration memory cells 204) may
be programmed and others may not be programmed within
logic area 604, as shown.

FIG.7 shows PLD 100 during the refresh process. For this
example, BSCAN circuit 602 has captured and maintained
the logical high value on I/O pin 608 (as shown by the exem
plary dotted path), while logic area 604 is being programmed.

10

15

25

30

35

40

45

50

55

60

65

6
Thus, during the refresh operation, the fuses within logic area
604 are at Some point in an un-programmed State. For
example, if the fuse is for a connection, then an un-pro
grammed fuse means no connection.

Furthermore, user register 606 in logic area 604 may not be
accessible and may store an unknown value, as shown in FIG.

7. For example, a clock signal provided to user register 606
via a clock pin (CLK) may not be externally held low to
maintain the logical high value in user register 606 during the
refresh operation. As another example, if the fuse connecting
the reset (R) terminal of user register 606 to a global reset
signal is programmed, the logical high value stored in user
register 606 may be reset to a logical low value when the
global reset signal is asserted during the refresh operation.

Alternatively as an example, if the global reset signal is
hardwired to the reset terminal of user register 606 and the
global reset signal is asserted during the refresh process, then
user register 606 will store a logical low value rather than the
desired logical high value. Consequently, the known-state
exit operation would be required to restore the logical high
value in user register 606 and avoid output signal glitches
when releasing control of the I/O pinto the new user-defined
logic.

FIG. 8 shows PLD 100 after the refresh process and with a
known-state exit. User register 606 within logic area 604 has
been preconditioned (i.e., preloaded) with a desired logical
high value, as shown by the dotted input path, so that the
logical high value on I/O pin 608 is maintained glitch-free
when user mode of operation resumes. This is possible
because the appropriate fuses within logic area 604 have been
programmed by the refresh process to provide the proper
connections to access user register 606 within logic area 604.
Consequently, before transitioning to the user mode of opera
tion and releasing control of I/O pin 608 to the user-defined
logic, the appropriate value may be provided via BSCAN
circuit 602 to user register 606 within logic area 604. User
register 606, in turn, provides the appropriate value to I/O pin
608 when the user mode of operation resumes.

Systems and methods are disclosed herein to provide
reconfiguration techniques for PLDS. For example, in accor
dance with an embodiment of the present invention, tech
niques are disclosed to provide transparent field reconfigura
tion such that the PLD can be reconfigured without
interrupting system operation (e.g., to provide dynamic pro
gramming of programmable devices with embedded Volatile
fuses (e.g., configuration SRAM) and embedded non-volatile
fuses (e.g., flash memory) for a minimally disruptive recon
figuration solution for the PLD).

In general, many system designs, within which the PLD
operates, require 99.999% up-time. For example, by using
background programming, the PLD continues to operate
while the external bitstream is loaded into non-volatile
memory. Furthermore, by driving glitch-free known values as
output signals via the I/O circuits, the PLD can provide valu
able functionality to the system in which it operates, such as
to continue to provide power enable, reset, or other critical
signals (e.g., which may be used to bring up the system) while
the PLD is reconfigured (e.g., in an on-the-fly reconfiguration
procedure). Thus, techniques are disclosed herein to control
the state of the logic within the PLD prior to exiting the
configuration process, which allows the device logic to drive
the correct levels on its outputs immediately, when control of
I/O is passed back to the PLD logic at the end of the configu
ration cycle.

Embodiments described above illustrate but do not limit
the invention. It should also be understood that numerous
modifications and variations are possible in accordance with
the principles of the present invention. Accordingly, the scope
of the invention is defined only by the following claims.

US 7,737,723 B1
7

What is claimed is:
1. A programmable logic device comprising:
a plurality of boundary scan cells adapted to precondition

registers within the programmable logic device with
desired signal values prior to release of control of input/
output blocks to user-defined logic provided by a recon
figuration;

a plurality of logic blocks;
configuration memory cells adapted to store first configu

ration data for configuration of the logic blocks and the
input/output blocks; and

non-volatile memory adapted to store second configuration
data and transfer the second configuration data to the
configuration memory cells for the reconfiguration of
the logic blocks and the input/output blocks.

2. The programmable logic device of claim 1 including
input/output pins associated with the plurality of input/output
blocks, wherein at least one of the boundary scan cells pro
vides an input path after the reconfiguration from at least one
of the input/output pins to at least one of the registers to
precondition with one of the desired signal values.

3. The programmable logic device of claim 1, wherein the
boundary scan cells are adapted to capture current output
values of the corresponding input/output blocks or receive
values provided to the programmable logic device and pro
vide the captured or received values as output signals from the
programmable logic device during the reconfiguration of the
programmable logic device.

4. The programmable logic device of claim 1 including a
plurality of input/output pins corresponding to the plurality of
input/output blocks, wherein the boundary scan cells are
adapted to provide input paths to the registers after the recon
figuration and prior to release of control of the input/output
blocks to the user-defined logic provided by the reconfigura
tion.

5. The programmable logic device of claim 1, wherein the
preconditioned registers are adapted to prevent glitches from
being provided by the input/output blocks after the reconfigu
ration.

6. The programmable logic device of claim 1 including
control logic adapted to control the transfer of the second
configuration data from the non-volatile memory to the con
figuration memory.

7. A programmable logic device comprising:
a plurality of input/output blocks and associated input/

output pins; and
means for capturing current output states of the input/

output blocks and providing as output signals via the
input/output pins during the reconfiguration at least one
of the current output states and desired output states,
wherein the capturing and providing means further pro
vides an input path to the programmable logic device via
the input/output pins during the reconfiguration and
prior to releasing control of the input/output blocks to
user-defined logic.

8. The programmable logic device of claim 7, wherein
input data is provided via the input path and corresponding
ones of the input/output pins after the reconfiguration to pre
condition registers prior to releasing control of the input/
output blocks.

9. The programmable logic device of claim 8, wherein the
preconditioned registers are adapted to prevent glitches from
being provided by the input/output blocks after the reconfigu
ration.

10. A method for performing a reconfiguration of a pro
grammable logic device comprising:

5

10

15

25

30

35

40

45

50

55

60

65

8
reconfiguring the programmable logic device while pro

viding from the programmable logic device desired out
put signal values; and

providing input data to the programmable logic device
after the reconfiguring to precondition registers within
the programmable logic device with the input data prior
to releasing control to logic provided by the reconfigur
1ng.

11. The method of claim 10 including performing a back
ground programming operation of the programmable logic
device prior to the reconfiguring.

12. A programmable logic device comprising:
a plurality of input/output blocks and associated input/

output pins;
a plurality of logic blocks;
configuration memory cells adapted to store first configu

ration data for a configuration of the logic blocks and the
input/output blocks;

non-volatile memory adapted to store second configuration
data and transfer the second configuration data to the
configuration memory cells for a reconfiguration of the
logic blocks and the input/output blocks; and

boundary scan cells configured to hold one or more of the
input/output pins of the programmable logic device in a
known logic state during transfer of the second configu
ration data from the non-volatile memory to the configu
ration memory cells.

13. The programmable logic device of claim 12, wherein
the boundary scan cells are adapted to precondition registers
within the programmable logic device with desired signal
values prior to release of control of the input/output blocks to
user-defined logic provided by the reconfiguration.

14. A method for reconfiguring a programmable logic
device comprising:

capturing current output signal values of the program
mable logic device;

reconfiguring the programmable logic device while pro
viding from the programmable logic device at least one
of the captured output signal values; and

preconditioning registers within the programmable logic
device with desired signal values prior to releasing con
trol to user-defined logic provided by the reconfiguring.

15. The method of claim 14, wherein the preconditioning
stores in at least one of the registers a logical value identical
to the captured output signal value provided from the pro
grammable logic device.

16. A method for reconfiguring a programmable logic
device comprising:

storing first configuration data within the programmable
logic device in Volatile configuration memory;

storing second configuration data within the program
mable logic device in non-volatile memory;

reconfiguring the Volatile configuration memory with the
second configuration data from the non-volatile
memory; and

maintaining one or more input/output pins of the program
mable logic device in a known logic state during the
reconfiguring.

17. The method of claim 16 including providing one or
more desired signal values to one or more registers within the
programmable logic device prior to release of control of the
one or more input/output pins to user-defined logic provided
by the reconfiguring.

