
(12) United States Patent
Tang et al.

US007459.931B1

(10) Patent No.: US 7459,931 B1
(45) Date of Patent: *Dec. 2, 2008

(54) PROGRAMMABLE LOGIC DEVICES WITH
TRANSPARENT FELD RECONFIGURATION

(75) Inventors: Howard Tang, San Jose, CA (US);
Henry Law, Los Altos, CA (US); David
L. Rutledge, Hillsboro, OR (US); Om P.
Agrawal, Los altos, CA (US); Fabiano
Fontana, San Jose, CA (US)

(73) Assignee: Lattice Semiconductor Corporation,
Hillsboro, OR (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 11/398,437

(22) Filed: Apr. 5, 2006

(51) Int. Cl.
H03K 19/177 (2006.01)

(52) U.S. Cl. ... 326/38: 326/40
(58) Field of Classification Search 326/37–41,

326/47, 101
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,548,228 A 8, 1996 Madurawe
5,640,107 A 6, 1997 Kruse
5,689,516 A 11/1997 Macket al.
5,696,455 A * 12/1997 Madurawe 326,41
5,844,422 A 12/1998 Trimberger et al.
6,049,222 A 4/2000 Lawman
6,150,837 A 11/2000 Beal et al.
6,208, 162 B1 3/2001 Bocchino 326/38
6,304,099 B1 10/2001 Tang et al.
6,356,107 B1 3/2002 Tang et al.

". 102 106

2 s
102

114

6.467,009 B1 10/2002 Winegarden et al.
6,507,211 B1 1/2003 Schultz et al.
6,538,468 B1 3/2003 Moore 326,40
6,704,850 B1 3/2004 Reynolds
6,714,041 B1 3/2004 Darling et al.
6,721,840 B1 4/2004 Allegrucci
6,732,263 B1 5/2004 May et al.
6,774,668 B1 8/2004 Wirtz, II
6,828,823 B1 12/2004 Tsui et al. 326,40
6,851,047 B1 2/2005 Fox et al.
6,873,177 B1 * 3/2005 Wennekamp et al. 326/8

(Continued)
OTHER PUBLICATIONS

Lattice Semiconductor Corporation, LatticeXP Family Data sheet,
Version 01.0, Feb. 2005, 77 pages.

(Continued)
Primary Examiner—Rexford Barnie
Assistant Examiner. Thienvu V Tran
(74) Attorney, Agent, or Firm—MacPherson Kwok Chen &
Heid LLP

(57) ABSTRACT

Systems and methods are disclosed herein to provide recon
figuration techniques for PLDS. For example, in accordance
With an embodiment of the present invention, a program
mable logic device includes logic blocks, input/output
blocks, a Volatile memory block, and configuration memory
cells to store configuration data for configuration of the logic
blocks, the input/output blocks, and the volatile memory
block of the programmable logic device. The programmable
logic device further includes circuit techniques for preventing
loss of data stored in the volatile memory block due to a
reconfiguration. Furthermore, for example, the program
mable logic device may further prevent the loss of data stored
in user registers or loss of input/output personality due to the
reconfiguration.

21 Claims, 10 Drawing Sheets

FLASH MEMORY r

Control Lodic

FLASH MEMORY n

US 7459.931 B1
Page 2

U.S. PATENT DOCUMENTS

7,099.227 B1 * 8/2006 Zhou 365,230.03
7,180,776 B1* 2/2007 Wennekamp et al. .. 365/185.04

2002/0163840 A1* 11/2002 Hiraki et al. 365, 18905
2004/0025086 A1* 2/2004 Gorday et al. 714,37
2005, 0083743 A1* 4/2005 Andrei et al. 365,202
2005. O189962 A1 9/2005 Agrawal et al.
2005/02483.64 A1* 11/2005 Vadi et al. 326/39
2006, OO67102 A1* 3, 2006 Yamada et al. 365,145

OTHER PUBLICATIONS

Altera R, Max II Device Handbook. http://www.altera.com,
M115V1-1.7, 330 pages, no date.
Actel Corporation, Pro ASICE Flash Family FPGAs, ARM7TM Soft
IP Support in Pro ASIC3E ARM7-Ready Devices, Oct. 2005, 166
pageS.
U.S. Appl. No. 10/809,658, Howard Tang.
U.S. Appl. No. 1 1/243.255. Howard Tang.
U.S. Appl. No. 1 1/293,941. Howard Tang.

U.S. Appl. No. 1 1/350,436. Howard Tang.
Lattice Semiconductor Corporation, ispXPTM Configuration Usage
Guidelines, Technical Notes TN 1026, Aug. 2002, pp. 1-18.
Lattice Semiconductor Corporation, ispXPGATM Family, Prelimi
nary Data Sheet, Sep. 2003, pp. 1-112.
Lattice Semiconductor Corporation, ispXPGATM Family, Dec. 2002,
pp. 1-90.
Xilinx. On the Fly Reconfiguration with CoolRunner-II CPLDs,
Application Note: CoolRunner-II CPLDs, May 15, 2003, pp. 1-10.
Actel Corporation, “ProASIC' Flash Family FPGAs'. v.3.4 Dec.
2003, pp. i-iv and I-I-I-64 & 2-1-2.67 & 2-1-2-7 (list of changes).
U.S. Appl. No. 1 1/397.985, filed Apr. 5, 2006, Fontana et al.
Lattice Semiconductor Corporation, LatticeXP Family Data Sheet,
Version 01.0, Feb. 2005, 77 pages.
Altera R, Max II Device Handbook. http://www.altera.com,
M115V1-1.7, 330 pages.
Actel Corporation, Pro ASICE Flash Family FPGAs, ARM7TM Soft
IP Support in Pro ASIC3E ARM7-Ready Devices, Oct. 2005, 166
pageS.

* cited by examiner

US 7459,931 B1 Sheet 1 of 10 Dec. 2, 2008 U.S. Patent

106 102

FIFFIR?FIL
106

102

112(1)
110

o

114

FIG. 1 104

Control Logic
FLASH MEMORY

FIG 2

US 7459,931 B1

HSWTH pun016)|Opg

în

U.S. Patent

US 7459,931 B1 Sheet 3 of 10 Dec. 2, 2008 U.S. Patent

7 '0IH

US 7459,931 B1 Sheet 5 of 10 Dec. 2, 2008 U.S. Patent

9 (0IJI

909
0/1K) |

O

U.S. Patent Dec. 2, 2008 Sheet 8 of 10 US 7459,931 B1

902 -1N

Copture -

900

PRELOAD
yp DATA Flip Flop

With
CLK Prelood

1002 1000

Stort
Address

Config
FOSh

FIG 11
1102(1)

Stort
Address

- - - - - - - - as as a- - - - as a

102

U.S. Patent Dec. 2, 2008 Sheet 9 of 10 US 7459,931 B1

NITALIZE

e
Y

1204(1) EBR ENABLE FIG. 12
? 1204(2) 1204(4) 12O6 e

1200

1304

y STORE Stotus
Store Fuse 1 1202

se SP
1308

U.S. Patent Dec. 2, 2008 Sheet 10 of 10 US 7459,931 B1

d

2 s 3 2

SRAM SRAM
Space Space

1500 From Left From Right
Holf Half

FIG. 15

US 7,459,931 B1
1.

PROGRAMMABLE LOGIC DEVICES WITH
TRANSPARENT FELD RECONFIGURATION

TECHNICAL FIELD

The present invention relates generally to electrical circuits
and, more particularly, to reconfiguration of programmable
logic devices.

BACKGROUND

A programmable logic device, such as field programmable
gate array (FPGA) or a complex programmable logic device
(CPLD), may be used in a variety of applications. A program
mable logic device (PLD) offers the advantage of being repro
grammable in the field (e.g., while on the circuitboard in its
operational environment).
A drawback of a conventional PLD is that, while being

programmed (which may take seconds to load an external
configuration bitstream), the PLD enters a sleep state, with its
input and output pins typically disabled (e.g., non-responsive
to input signals while providing indeterminate output sig
nals). If the PLD is in a critical path or is used to control
critical functions, these drawbacks may be unacceptable. Fur
thermore, data stored in user registers or in memory blocks
(e.g., volatile embedded RAM blocks) is generally lost during
the programming process. As a result, there is a need for
improved programming and configuration techniques for
PLDS.

SUMMARY

In accordance with one embodiment of the present inven
tion, a programmable logic device includes a plurality of
logic blocks; a plurality of input/output blocks; configuration
memory cells adapted to store first configuration data for
configuration of the logic blocks and the input/output blocks
of the programmable logic device; Volatile memory adapted
to store data within the programmable logic device; and a
circuit adapted to preserve the data for the volatile memory
during a reconfiguration of the programmable logic device.

In accordance with another embodiment of the present
invention, a programmable logic device includes a plurality
of logic blocks; an input/output block; a volatile memory
block adapted to store data within the programmable logic
device; configuration memory cells adapted to store first con
figuration data for configuration of the logic blocks, the input/
output blocks, and the Volatile memory block of the program
mable logic device; and means for preventing loss of data
stored in the Volatile memory block due to a reconfiguration.

In accordance with another embodiment of the present
invention, a method of reconfiguring a programmable logic
device includes reconfiguring the programmable logic
device; and preserving at least one data value of a Volatile
memory during the reconfiguring.
The scope of the invention is defined by the claims, which

are incorporated into this section by reference. A more com
plete understanding of embodiments of the present invention
will be afforded to those skilled in the art, as well as a real
ization of additional advantages thereof, by a consideration of
the following detailed description of one or more embodi
ments. Reference will be made to the appended sheets of
drawings that will first be described briefly.

10

15

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram illustrating an exemplary
programmable logic device in accordance with an embodi
ment of the present invention.

FIG. 2 shows a block diagram illustrating exemplary
implementation details for the programmable logic device of
FIG. 1 in accordance with an embodiment of the present
invention.

FIG.3 shows a flowchart illustrating exemplary operations
for the programmable logic device of FIG. 1 in accordance
with an embodiment of the present invention.

FIG. 4 shows a block diagram illustrating an exemplary
circuit implementation for a portion of the programmable
logic device of FIG. 1 in accordance with an embodiment of
the present invention.

FIG. 5 shows a block diagram illustrating an exemplary
circuit implementation for a portion of the programmable
logic device of FIG. 1 in accordance with an embodiment of
the present invention.

FIGS. 6-8 show block diagrams illustrating exemplary
operations associated with a reconfiguration for the program
mable logic device of FIG. 1 in accordance with an embodi
ment of the present invention.

FIG. 9 shows a block diagram illustrating an exemplary
circuit implementation for a latch within the programmable
logic device of FIG. 1 in accordance with an embodiment of
the present invention.

FIG. 10 shows a block diagram illustrating an exemplary
circuit implementation for preserving a user register value
and providing a known state exit for the programmable logic
device of FIG. 1 in accordance with an embodiment of the
present invention.

FIG. 11 shows a block diagram illustrating exemplary
implementation details for the programmable logic device of
FIG. 1 in accordance with an embodiment of the present
invention.

FIGS. 12-14 show block diagrams illustrating exemplary
implementation details for a store-to-flash operation for the
programmable logic device of FIG. 1 in accordance with an
embodiment of the present invention.

FIG. 15 shows a block diagram illustrating exemplary
implementation details for the programmable logic device of
FIG. 1 in accordance with an embodiment of the present
invention.

Embodiments of the present invention and their advantages
are best understood by referring to the detailed description
that follows. It should be appreciated that like reference
numerals are used to identify like elements illustrated in one
or more of the figures.

DETAILED DESCRIPTION

FIG. 1 shows a block diagram illustrating an exemplary
programmable logic device (PLD) 100 in accordance with an
embodiment of the present invention. PLD 100 includes
input/output (I/O) blocks 102 and programmable logic blocks
104 (e.g., also referred to in the art as configurable logic
blocks or logic array blocks). I/O blocks 102 provide I/O
functionality (e.g., Supports one or more I/O and/or memory
interface standards) for PLD 100. Logic blocks 104 provide
logic functionality for PLD 100, such as LUT-based logic
typically associated with FPGAs or array-based logic typi
cally associated with CPLDs.
PLD 100 may also include non-volatile memory 106 (e.g.,

EEPROM or flash memory), volatile memory 108 (e.g., block
SRAM), clock-related circuitry 110 (e.g., PLL circuits), one

US 7,459,931 B1
3

or more data ports 112, configuration memory 114, and/oran
interconnect 116. It should be understood that the number and
placement of the various elements, such as I/O blocks 102.
logic blocks 104, non-volatile memory 106, volatile memory
108, clock-related circuitry 110, data port 112, configuration
memory 114, and interconnect 116, is not limiting and may
depend upon the desired application. Furthermore, it should
be understood that the elements are illustrated in block form
for clarity and that certain elements, such as configuration
memory 114 and interconnect 116, would typically be dis
tributed throughout PLD 100 to perform their conventional
functions (e.g., storing configuration data that configures
PLD 100 and providing routing resources, respectively).

Data port 112 may be used for programming PLD 100, for
example as explained further herein. For example, data port
112(1) may represent a programming port such as a central
processing unit (CPU) port, also referred to as a peripheral
data port or a sysCONFIG programming port. Data port 112
(2) may represent, for example, a programming port such as
a joint test action group (JTAG) port by employing standards
such as Institute of Electrical and Electronics Engineers
(IEEE) 1149.1 or 1532 standards. Data ports 112(1) and
112(2) are not both required, but one or the other may be
included as a port to receive configuration data and com
mands.

Non-volatile memory 106 may be used to store configura
tion data within PLD 100 for transfer to configuration
memory 114 of PLD 100 upon power up or during reconfigu
ration of PLD 100. This may drastically reduce the time to
reconfigure PLD 100 relative to an external bitstream (e.g.,
reduce the time from seconds to microseconds for loading of
configuration data into configuration memory 114).

Non-volatile memory 106 may also be used to provide
background programming and/or storage for PLD 100 in
accordance with some embodiments of the present invention.
For example for storage functionality, non-volatile memory
106 may be used to store data (e.g., the data values) from
volatile memory 108 and/or other types of memory (e.g., user
registers within PLD 100) during the reconfiguration process.
Thus as an example, the values of the data stored by volatile
memory 108 within PLD 100, just prior to reconfiguration,
may be preserved in non-volatile memory 106 during the
reconfiguration process and then written back into volatile
memory 108 prior to returning to user mode, as explained
further herein.

For example for background programming. PLD 100 may
remain in user mode, based on the configuration data stored in
configuration memory 114 within PLD 100, while non-vola
tile memory 106 is programmed with new configuration data
(e.g., a new user defined pattern). Once the new configuration
data is stored in non-volatile memory 106, this data can be
transferred from non-volatile memory 106 to configuration
memory 114 to reconfigure PLD 100, a process sometimes
referred to as refresh. As explained further herein, the refresh
process can be initiated by a signal or instruction provided to
data port 112 (e.g., pulsing data port 112(1) or providing a
JTAG refresh instruction via data port 112(2)).
As a specific example, FIG. 2 shows a block diagram

illustrating a PLD 200, which provides exemplary implemen
tation details for PLD 100 of FIG. 1 in accordance with an
embodiment of the present invention. PLD 200 includes non
Volatile memory 106 (e.g., flash memory), configuration
memory 114, and control logic 202.

Configuration memory 114 (e.g., volatile SRAM cells or
other types of Volatile or non-volatile memory) are used in a
conventional manner to store configuration data, which deter
mines the user defined functions of PLD 200 (e.g., determines

5

10

15

25

30

35

40

45

50

55

60

65

4
programmable functions of I/O blocks 102, logic blocks 104,
and interconnect 116). Control logic 202 controls the internal
transfer of the configuration data from non-volatile memory
106 to configuration memory 114, as would be understood by
one skilled in the art.

It should be understood that flash memory represents an
exemplary type of memory for non-volatile memory 106, but
other types of non-volatile memory (e.g., EECMOS) that can
be reprogrammed once or repeatedly may be substituted for
non-volatile memory 106. Furthermore, either non-volatile
memory 106 or configuration memory 114 may be pro
grammed (i.e., receive and store information in its memory)
to store configuration data for PLD 200, but the device func
tionality of PLD 200 is determined by the information stored
in configuration memory 114. Thus, PLD 200 is configured
(including reconfiguration or partial reconfiguration) when
information is programmed into configuration memory 114.

It should also be understood, in accordance with one or
more embodiments of the present invention, that non-volatile
memory 106 and configuration memory 114 may each be
programmed (including reprogrammed), for example, via
data port 112(1) or data port 112(2), depending upon the
desired application or design requirements. Further details
regarding programming may be found in U.S. Pat. No. 6,828,
823 and U.S. Patent Publication No. 2005-0189962-A1, pub
lished Sep. 1, 2005.

In general, during programming of configuration memory
114 and reconfiguration of the PLD (e.g., PLD 100), it would
be advantageous to continue to Support system operation
functions. However, conventional approaches typically used
an external bitstream to provide the configuration data
directly to the configuration memory of the PLD, while the
PLD’s output signals are tri-stated or held to logical high or
low values. Additionally for conventional approaches, any
information stored in volatile memory 108 and other infor
mation (e.g., data stored in user registers of a user program
mable logic area) are not saved and are lost during the recon
figuration process. Furthermore during the reconfiguration
process, an I/O block's personality is not maintained (e.g., an
I/O block's buffers are not preserved as LVDS, but may revert
to some default state such as LVCMOS), where the person
ality refers to the programmable characteristics of the I/O
block, Such as for example the drive strength, signal levels, or
other aspects for the type of I/O standard implemented for the
configured I/O block).

In contrast, in accordance with one or more embodiments
of the present invention, techniques are disclosed herein to
use background programming to provide the configuration
data to the PLD and, during configuration, provide desired
PLD output signals that remain glitch-free during the transi
tion from configuration to user mode of the PLD (e.g., full
control of the logical values of the output signals provided by
PLD 100 during the refresh process can still be provided).
Furthermore, in accordance with some embodiments of the
present invention and as discussed further herein, the person
ality of I/O blocks 102 and/or the data stored in volatile
memory 108 and/or other information (e.g., data stored in
user registers) may be preserved during a reconfiguration and
then restored after completion of the programming of con
figuration memory 114 (e.g., prior to entering user mode of
operation after the reconfiguration).

For example, FIG. 3 shows a flowchart 300 illustrating
exemplary reconfiguration operations for PLD 100 of FIG. 1
in accordance with an embodiment of the present invention. It
should be understood that the various flowchart operations
are note all required and some may be performed in a different
order. Also as discussed further herein, the operations illus

US 7,459,931 B1
5

trated in flowchart 300 may be controlled by software (e.g.,
user Software) or hardware, as illustrated in an exemplary
fashion in FIG. 3 with the corresponding operational flow for
the exemplary commands and the exemplary Software control
indicators (e.g., user Software start) and/or JTAG commands.

For example, Lattice Semiconductor Corporations ispVM
software is a Windows-based tool set that facilitates the pro
gramming of their PLDs. The ispVM Embedded tool gener
ates C code that, when compiled for and executed on a wide
range of embedded processors, enables the programming of
the PLDs. Consequently, the ispVM software or other con
ventional PLD programming software can issue the program
ming commands directly, such as during prototyping, or gen
erate, for example, an industry-standard Serial Vector Format
(SVF) file for reconfiguration in the field. Thus, for example,
the SVF file may be used to control the various operations in
flowchart 300, such as for example the background program
ming, store-to-flash, leave alone operation, refresh process,
restore operation, and/or the known-state exit operation (e.g.,
create a delay period for users to apply the vectors to precon
dition the registers), which are described further herein.

In reference to FIG. 3, background programming is first
initiated (302), while the PLD remains in user mode operation
based on the current configuration data stored in configura
tion memory 114. For example, background programming of
non-volatile memory 106 (flash memory) with the new con
figuration data is performed as the PLD operates based on
current configuration data stored in configuration memory
114.
The background programming may be verified and then an

optional store-to-flash operation (304) may be performed,
which may be triggered for example by a store-to-flash con
trol signal. For example for operation 304, data from volatile
memory 108, user registers, and/or other types of memory or
information within PLD 100 may be stored by non-volatile
memory 106. The information stored by non-volatile memory
106 can then be returned back or restored to its original source
within PLD 100, such as for example to volatile memory 108,
during or after the new configuration data is written to con
figuration memory 114 (operation 312). Consequently,
desired information within PLD 100 may be preserved while
a reconfiguration is performed.
As explained further herein in accordance with some

embodiments of the present invention, non-volatile memory
106 may be viewed as having a configuration flash section
(e.g., to store configuration data) and a user flash section (e.g.,
to store and preserve data within PLD 100 (i.e., for operation
304) during the reconfiguration process). The background
programming (302) may only write to the configuration flash
section. Alternatively, if the background programming (302)
writes over the user flash section, the store-to-flash operation
(304) transfers the desired information to be preserved (e.g.,
data from volatile memory 108) to the user flash section and
writes over the data in the user flash section provided during
the background programming.

The I/O states (e.g., current I/O values, such as logical high
or low, high impedance values, or sampled State) may be
captured at operation 306. Optionally as part of operation
306, the I/O states may be altered as desired by a user, as
explained further herein (e.g., via input paths through the
boundary scan cells by manipulating pins via an external
device or through JTAG).

Using the boundary scan cells at operation 308, the I/O
states are held at the captured or desired values and the PLD
is reconfigured or refreshed (312) by copying the configura
tion data from non-volatile memory 106 to configuration
memory 114. The reconfiguration may be initiated, for

10

15

25

30

35

40

45

50

55

60

65

6
example, by pulsing or toggling data port 112(1) or providing
a JTAG instruction (Refresh) to data port 112(2).
As an alternative or in addition to using the boundary scan

cells for operations 306 and 308, latches may be used as
described further hereinto latch and preserve the current state
of one or more of the user registers at operation 310. Conse
quently, prior to the refresh (operation 312), the data values of
the user registers may be latched while the refresh operation
programs configuration memory 114. After the refresh opera
tion (312), the user registers may be preconditioned (opera
tion 314) by altering the register's values as desired by a user
as explained further herein (e.g., via input paths through the
boundary scan cells by manipulating pins via an external
device or through JTAG).

Operation 310 may also optionally retain the personalities
of one or more of I/O blocks 102. For example, latches may be
provided to latch and retain the current personalities of one or
more of I/O blocks 102, while the refresh is performed (312).
The refresh process may be verified prior to initiating the

release of the I/O to the newly configured user-defined logic
(operation 314). Internal registers within the I/O or other
portions of the PLD may be preconditioned (314) with data to
prevent glitches from occurring during the transition to user
defined logic control of the I/O (e.g., the data for precondi
tioning provided via input paths through the boundary scan
cells). After providing the JTAG instruction (e.g., BYPASS or
EXIT EXTEST), the PLD is now configured and operating
based upon the new configuration data, with the I/O output
signals under control of the newly configured user logic of the
PLD. Furthermore, if the internal registers were precondi
tioned, the logic outputs exit in the desired State determined
by the inputs to the user control logic.
The techniques illustrated may also be referred to herein by

the operations of “leave alone I/O and “known-state exit.”
The leave alone I/O operation refers to the ability to program
in background mode and, while the PLD is refreshed, hold the
state of the I/O output pins in a known logic State (e.g.,
generally operations 302 and 306 through 312 of flowchart
300). The known state may be based on the I/O values cap
tured or based on a known system vector that is provided to set
the I/O values based on user-predefined settings. Thus, the
leave alone I/O allows critical signals (e.g., reset and power
enable signals provided by the PLD in a system) to not glitch
and to not go active (e.g., float or provide undesired values)
while the PLD is reconfigured.
The known state exit operation refers to the updating of

some or all of the internal register states with predefined
values (e.g., the optional portion of operation 314 offlowchart
300). The values may be provided by latches (e.g., as dis
cussed in reference to FIG. 9) and/or via I/O pins and input
paths through the boundary scan (BSCAN) cells (e.g., as
discussed in reference to FIGS. 4 and 5). This operation is
useful when the PLD logic that provides the value for the I/O
pin may be in a state that would cause the I/O pin to pass
through a glitch or inappropriate signal level (e.g., glitch or
active level). Thus, the PLD exits to user-defined operation
after reconfiguration in a known logic State.
The leave alone operation (operations 306 and 308) may be

implemented, for example, by using the BSCAN cells within
the PLD to capture current I/O pin output states and/or option
ally overlay with a custom I/O vector to set desired I/O pin
output values. For example, FIGS. 4 and 5 show exemplary
block diagram implementations for BSCAN circuits 400 and
500, respectively, for I/O blocks 102 of PLD 100 of FIG. 1 in
accordance with an embodiment of the present invention.
BSCAN circuit 400 (BSCAN cell) illustrates that one or

more BSCAN registers may be used to store the sampled I/O

US 7,459,931 B1
7

value to provide as an output signal via an I/O pin (e.g., using
the JTAG instruction SAMPLE provided via data port 112(2)
to place output states in BSCAN cell preload registers) and/or
overlay a custom vector of user-defined values to provide as
the output signal via the I/O pin (e.g., using the JTAG instruc
tion PRELOAD). If custom vector values are provided, these
can be preloaded into the PLDjust prior to the refresh process
(e.g., during operation 306 or 308 of flowchart 300). The I/O
control can then be transferred to BSCAN circuit 400 (e.g., by
using the JTAG instruction EXTEST), with the dotted path
and bold arrow illustrating I/O values provided to the I/O pin
based on custom vector values or captured I/O values.
BSCAN circuit 500 illustrates another exemplary circuit

implementation, in accordance with an embodiment of the
present invention, for a BSCAN cell. As an example, BSCAN
circuit 500 shows an exemplary inputpath 502 via the I/O pin,
where input path 502 is not blocked by BSCAN circuit 500
and is always available as an input path for providing data into
the PLD (e.g., before the refresh process to provide desired
I/O values or after the refresh process to precondition internal
registers with desired values). Consequently, data and other
information may be provided via the input path to user logic
and/or registers within the PLD (e.g., to provide values for the
known-state exit operation).

FIG. 5 further provides a table providing various multi
plexercontrol signal values (e.g., for control signals Mode 1.
Mode 2, and Mode 3) for corresponding JTAG instructions.
Note, for example, that input path 502 is always available
through a multiplexer controlled by the Mode 2 control sig
nal for the exemplary JTAG instructions, except for the JTAG
INTEST instruction. Further additional details regarding
exemplary BSCAN circuits and operation may be found, for
example, in U.S. Pat. Nos. 6,304,099 and 6,356,107.

FIGS. 6-8 show block diagrams illustrating exemplary
operations associated with a reconfiguration for PLD 100 of
FIG. 1 in accordance with an embodiment of the present
invention. Specifically, FIGS. 6-8 show an exemplary
BSCAN circuit 602 (e.g., similar to BSCAN circuit 500) and
a portion of a user programmable logic area 604 of PLD 100.

For example, FIG. 6 shows PLD 100 operating in a user
mode of operation prior to the refresh operation. The logical
states stored in BSCAN circuit 602 may be unknown (or don’t
care state as indicated by the question mark) and a user
register 606 within logic area 604 may store a logical high
value (i.e., a logical high data value '1'), which user register
606 provides to an I/O pin 608, as shown by the dotted path.
It should also be noted that some fuses (e.g., configuration
memory 114) may be programmed and others may not be
programmed within logic area 604, as shown by the shaded
and clear Squares (where shaded indicates a programmed
connection).

FIG.7 shows PLD 100 during the refresh process. For this
example, BSCAN circuit 602 has captured and maintained
the logical high value on I/O pin 608 (as shown by the exem
plary dotted path), while logic area 604 is being programmed.
Thus, during the refresh operation, the fuses within logic area
604 are at Some point in an un-programmed State. For
example, if the fuse is for a connection, then an un-pro
grammed fuse means no connection.

Furthermore, user register 606 in logic area 604 may not be
accessible and may store an unknown data value, as shown in
FIG. 7. For example, a clock signal provided to user register
606 via a clock pin (CLK) may not be externally held low to
maintain the logical high value in user register 606 during the
refresh operation. As another example, if the fuse connecting
the reset (R) terminal of user register 606 to a global reset
signal is programmed, the logical high value (i.e., a “1” data

10

15

25

30

35

40

45

50

55

60

65

8
value) stored in user register 606 may be reset to a logicallow
value (i.e., a “0” data value) when the global reset signal is
asserted during the refresh operation.

Alternatively as an example, if the global reset signal is
hardwired to the reset terminal of user register 606 and the
global reset signal is asserted during the refresh process, then
user register 606 will store a logical low value rather than the
desired logical high value. Consequently, the known-state
exit operation would be required to restore the logical high
value in user register 606 and avoid output signal glitches
when releasing control of the I/O pinto the new user-defined
logic.

FIG. 8 shows PLD 100 after the refresh process and with a
known-state exit. User register 606 within logic area 604 has
been preconditioned (i.e., preloaded) with a desired logical
high value, as shown by the dotted input path, so that the
logical high value on I/O pin 608 is maintained glitch-free
when user mode of operation resumes. This is possible
because the appropriate fuses within logic area 604 have been
programmed by the refresh process to provide the proper
connections to access user register 606 within logic area 604.
Consequently, before transitioning to the user mode of opera
tion and releasing control of I/O pin 608 to the user-defined
logic, the appropriate data value may be provided via BSCAN
circuit 602 to user register 606 within logic area 604. User
register 606, in turn, provides the appropriate value to I/O pin
608 when the user mode of operation resumes.
FIG.9 shows a circuit 900, which illustrates an exemplary

circuit implementation for a latch (also referred to herein and
optionally used as a bus keeper circuit) for PLD 100 in accor
dance with an embodiment of the present invention. One or
more of circuits 900 may be implemented within PLD 100 to
store and preserve user register output values and/or retain the
personality of I/O blocks 102, as described for operation 310
(FIG. 3).

Circuit 900 includes a transistor 902, a memory cell 904,
and a multiplexer 906. A signal 910 may be stored by memory
cell 904 by asserting (e.g., a logical high value) a capture
control signal908 to switch on transistor902. A control signal
912 controls multiplexer 906 to select signal 910 or the stored
value provided by memory cell 904 (e.g., a latch) to provide
on an output signal path 914.

Signal 910 may represent a signal from one of configura
tion memory cells 114, a user register output signal (e.g., a Q
output signal of user register 606), or some other signal whose
value it is desired to acquire and preserve during the recon
figuration process (e.g., a signal (e.g., data Value) from one
configuration memory 114 that controls some personality
aspect for I/O block 102). During the refresh (operation 312),
for example, control signal 912 can be asserted to provide the
latched data value on output signal path 914 to maintain a
consistent output value during the refresh, and then be deas
serted when desired so that signal 910 is selected by multi
plexer 912 and provided on output signal path 914 after the
reconfiguration has been completed.

It should also be understood that circuit 900 may be modi
fied as desired, depending upon the desired application, as
would be understood by one skilled in the art. For example,
circuit 900 may include weak pull-up and pull-down resistors
on output signal path914 at the output of multiplexer 906 to
maintain logical high or logical low states on output signal
path 914 during programming mode. However, the weak
pull-up and pull-down resistors permit the latched logic State
provided by memory cell 904 to be overridden by external
signals driven onto output signal path914 if desired.

For example, external signals may be driven onto output
signal path 914 to precondition registers in a logic area of

US 7,459,931 B1

PLD 100 to support the known state exit operation previously
described herein. In this regard, it will be appreciated that, in
various embodiments, output signal path 914 of circuit 900
(e.g., a bus keeper circuit) may be connected with input path
502 of FIG. 5 previously described herein. Thus, one or more
circuits 900 may be implemented as bus keeper circuits to
maintain the desired values on I/O pins during the refresh
(operation 312), for example, to preserve user register values
and maintain continuity from the old user configuration to the
new user configuration, but would allow external input sig
nals to be driven onto output signal path914 to precondition
registers (operation 314).

FIG. 10 shows a circuit 1000, which illustrates an exem
plary circuit implementation for preserving a user register
value and/or providing a known state exit for PLD 100 of FIG.
1 in accordance with an embodiment of the present invention.
Circuit 1000 includes a user register 1002 (e.g., representing
user register 606) and a multiplexer 1004, which are within
PLD 1 OO.

For this exemplary implementation, user register 1002 may
represent a D-type flip flop with preload functionality. As an
example, when PLD 100 enters the programming mode (to
reconfigure PLD 100), a PRELOAD signal 1008 may be held
high to preload data provided at a preload data (PD) terminal
1010 of user register 1002. For example, by controlling mul
tiplexer 1004, either the current Q output signal 1012 or
another data signal 1014 may be latched into user register
1002 at PD terminal 1010 as provided by multiplexer 1004.
The control of multiplexer 1004 and the value of data signal
1014 may be provided, for example, by configuration
memory cells 1006 (separately referenced as 1006(1) and
1006(2)), which are part of configuration memory 114.

In general, if the current value of Q output signal 1012 is
stored into preload data (PD) terminal 1010, user register
1002 will provide (after reentering user mode after reconfigu
ration) the same value as just prior to the reconfiguration.
Thus, the value provided by user register 1002 will be pre
served during the reconfiguration (e.g., the register value
from the previous user pattern is carried into the new pattern
or may be viewed as using the user register to store the current
data for the next application).

If the value stored into preload data (PD) terminal 1010 is
provided by data signal 1014 (e.g., the SRAM fuse), user
register 1002 will provide this user defined new value (after
reentering user mode after reconfiguration). Consequently,
user register 1002 will enter the user mode after the recon
figuration with a user specified state in user register 1002.
Thus, in accordance with some embodiments of the present
invention, this technique may be applied as desired to any
number of user registers within PLD 100 to provide a known
state (e.g., known state exit) from the user register when
entering the user mode after a reconfiguration. Additionally in
accordance with an embodiment of the present invention, this
technique may be applied to provide a known state entrance
such that user register 1002 is providing a known value just
prior to entering reconfiguration.

FIG. 11 shows a block diagram illustrating a PLD 1100,
which provides exemplary store-to-flash implementation
details (e.g., operation 304 of FIG. 3) for PLD 100 of FIG. 1
in accordance with an embodiment of the present invention.
PLD 1100 includes a non-volatile memory 1102, which may
represent, for example, non-volatile memory 106 (FIG. 1).
Non-volatile memory 1102 includes a configuration flash
section 1102(1) and a user flash section 1102(2) (also referred
to herein as a shadow flash section).

Configuration flash section 1102(1) is used to store con
figuration data for transfer to configuration memory 114 (not

5

10

15

25

30

35

40

45

50

55

60

65

10
shown) within a PLD portion 1104 of PLD 1100 to configure
PLD 1100. PLD portion 1104 includes generally core cir
cuitry 1108 (e.g., I/O blocks 102, programmable logic blocks
104, and interconnect 116) and volatile memory blocks 1106
(e.g., representing volatile memory 108 and labeled EBR).
User flash section 1102(2) is used to store data transferred
from volatile memory blocks 1106 to preserve during recon
figuration and which is later transferred back to volatile
memory blocks 1106 during or after the refresh (e.g., opera
tion 312) but prior to transition to user mode of operation.

For example, FIGS. 12-14 show circuits 1200, 1300, and
1400, respectively, which illustrate exemplary implementa
tion details for a store-to-flash operation (e.g., operation 304)
for PLD 1100 of FIG. 11 (or PLD 100 of FIG. 1) in accor
dance with an embodiment of the present invention. FIGS.
12-14 may be viewed as illustrating generally a user program
ming flow of operations for user flash.

Circuit 1200 includes control logic 1202, user flash section
1102(2), and volatile memory blocks 1106. Control logic
1202, for example, may beformed as part of or separate from
control logic 202 (FIG. 2). It should be noted that other
circuitry, such as configuration flash section 1102(1) or pro
grammable logic blocks 104, are not shown for clarity.

Volatile memory blocks 1106, for example, have been con
figured by a user pattern to function as flash memory (Flash),
RAM, and ROM, as labeled in FIG. 12. User flash section
1102(2) is also illustrated in an exemplary fashion to include
sections 1204(1) through 1204(4), which correspond to
memory available for storage of data for the flash memory,
RAM, RAM, and ROM as labeled for volatile memory blocks
1106. For example, volatile memory block 1106 that is
labeled Flash is a volatile memory block (e.g., embedded
block RAM or EBR) that a user desired to configure to func
tion as flash memory. Furthermore for example, section 1204
(1) is the section of user flash section 1102(2) (e.g., shadow
flash) that will hold and preserve data for volatile memory
block 1106 labeled flash memory during the reconfiguration
for the store-to-flash operation (e.g., section 1204(1) shadows
volatile memory block 1106 labeled Flash).

Circuit 1200 illustrates, with the bold arrow from user flash
section 1102(2) through volatile memory blocks 1106, the
ability to transfer data from user flash section 1102(2) to
volatile memory blocks 1106 to initialize volatile memory
blocks 1106 with desired data. For example, control logic
1202 may provide an enable signal 1206 (labeled EBR
enable) to volatile memory blocks 1106 to enable volatile
memory blocks 1106 to store the data provided by user flash
section 1102(2). Control logic 1202 may be controlled, for
example, via SPI or JTAG ports (e.g., via data port 112)
during the store-to-flash operation or to initiate the store-to
flash operation.
PLD 1100 containing circuit 1200 may be viewed as oper

ating in a user mode of operation as configured by a user
pattern (i.e., a user defined pattern 'A'). If a user desires to
reconfigure PLD 1100, non-volatile memory 1102 may be
erased (e.g., write all logical high values '1') and then a new
user pattern (i.e., a user defined pattern “B”) may be written to
non-volatile memory 1102 (including user flash section 1102
(2)), while PLD 1100 operates in user mode with user defined
pattern 'A' (e.g., background programming operation 302 is
performed). For example, user flash section 1102(2) may now
store a default pattern (e.g., store all logical low values “0”),
except for section 1204(4) corresponding to volatile memory
block 1106 (labeled ROM) that a user desires to function as
ROM and thus section 1204(4) stores the desired ROM data
(e.g., the same ROM data as in user defined pattern 'A').

US 7,459,931 B1
11

Prior to performing the refresh operation (e.g., operation
312), a user may desire to preserve the data stored in volatile
memory blocks 1106. Therefore, as illustrated in FIG. 13, a
store-to-flash operation (e.g., operation 304) may be per
formed to transfer the data stored in volatile memory blocks
1106 to user flash section 1102(2) to preserve the data during
the refresh. Upon completion of the store-to-flash operation
for this example, section 1204(1) through 1204(4) will store
the data from volatile memory blocks 1106 labeled Flash,
RAM, RAM, and ROM, respectively.

For example as shown in circuit 1300, when a store-to-flash
control signal 1308 is deasserted, a store control signal 1314
is provided by a logic gate 1302 (e.g., which may also be
controlled by a store signal 1306 provided by an SRAM fuse
programmed to a “1” value) to control logic 1202. Alterna
tively, the store-to-flash operation may be controlled by SPI
or JTAG ports. A store status signal 1304 may be provided by
control logic 1202 to indicate when the store-to-flash opera
tion has been completed.

During the store-to-flash operation (FIG. 13), control logic
1202 may provide a store control signal 1312 to volatile
memory blocks 1106 and a flash enable control signal 1310 to
user flash section 1102(2) to control the transfer and storage
of data from volatile memory blocks 1106 to user flash sec
tion 1102(2). Upon completion of the store-to-flash opera
tion, the refresh operation may be performed to reconfigure
PLD 1100. For example for the refresh operation, the con
figuration data stored in configuration flash section 1102(1)
may be transferred to configuration memory 114, and the data
stored and preserved in user flash section 1102(2) may be
transferred to volatile memory blocks 1106 (e.g., as illus
trated in FIG. 14). The refresh operation may be initiated, for
example, by powering down and then powering up PLD 1100,
toggling a program pin of PLD 1100, or sending a refresh
command to PLD 1100 (e.g., via a slave SPI interface or
JTAG port).

FIG. 15 shows a block diagram illustrating a PLD 1500,
which provides exemplary implementation details (e.g.,
operation 304 of FIG.3) for the programmable logic device of
FIG. 1 in accordance with an embodiment of the present
invention. In general, FIG. 15 illustrates an exemplary data
flow between non-volatile memory 106 (e.g., flash memory)
and volatile memory 108 (e.g., EBR) and configuration
memory 114 (e.g., configuration SRAM fuses). As noted
herein, although configuration memory 114 is shown in block
form, it should be understood that configuration memory 114
typically would be distributed within PLD 1500 in a conven
tional fashion to store configuration data and configure PLD
1500 for its intended purpose based on the configuration data.

Non-volatile memory 106 may be viewed in accordance
with some embodiments of the present invention as including
configuration flash sections 1102(1) and user flash sections
1102(2). Configuration flash sections 1102(1), which are
shown as shaded portions of non-volatile memory 106 and
also referred to as configuration flash, are used to store con
figuration data for transfer to configuration memory 114 to
configure PLD 1500. This is illustrated in FIG. 15 by the
single-headed arrows drawn from configuration flash sec
tions 1102(1) to portions of PLD 1500 where configuration
memory 114 would typically be distributed. For example,
configuration flash sections 1102(1) on the left and right sides
of PLD 1500 may be used to transfer data to configuration
memory 114 on the left half and right half, respectively, of
PLD 1500 as shown.

User flash sections 1102(2), which are shown as unshaded
portions of non-volatile memory 106 and also referred to as
user flash or EBR shadow flash, are used to store the data for

10

15

25

30

35

40

45

50

55

60

65

12
volatile memory 108 and preserve the data for volatile
memory 108 through a reconfiguration of PLD 1500. This is
illustrated in FIG. 15 by the double-headed arrows drawn
between user flash sections 1102(2) and volatile memory 108
(e.g., bi-directional operation of user flash). For example,
user flash sections 1102(2) on the left and right sides of PLD
1500 may be used to transfer data to volatile memory 108 on
the left half and right half, respectively, of PLD 1500 as
shown. Furthermore for example, user flash sections 1102(2)
on the left and right sides of PLD 1500 may be used to receive
data from volatile memory 108 on the left half and right half,
respectively, of PLD 1500 as shown.

Thus, the content of volatile memory 108 may be pro
grammedback into user flash sections 1102(2), the process of
which may also be referred to as a Store action (e.g., as
discussed in reference to FIG. 13), to preserve data stored by
volatile memory 108 prior to a reconfiguration. Conse
quently, user flash sections 1102(2) may be viewed, for this
example, as user flash memory and as a Subset of non-volatile
memory 106 to provide self-programming capability.

Systems and methods are disclosed herein to provide
reconfiguration techniques for PLDS. For example, in accor
dance with an embodiment of the present invention, tech
niques are disclosed to provide transparent field reconfigura
tion such that the PLD can be reconfigured without
interrupting system operation (e.g., to provide dynamic pro
gramming of programmable devices with embedded Volatile
fuses (e.g., configuration SRAM) and embedded non-volatile
fuses (e.g., flash memory) for a minimally disruptive recon
figuration solution for the PLD).

In general, many system designs, within which the PLD
operates, require 99.999% up-time. For example, by using
background programming, the PLD continues to operate
while the external bitstream is loaded into non-volatile
memory. The non-volatile memory can also optionally be
used to preserve information, such as from the embedded
block RAM, during the reconfiguration process and then
restored into the corresponding memory (e.g., embedded
block RAM) prior to returning to user mode of operation.
Furthermore, by driving glitch-free known values as output
signals via the I/O circuits, the PLD can provide valuable
functionality to the system in which it operates, such as to
continue to provide power enable, reset, or other critical sig
nals (e.g., which may be used to bring up the system) while
the PLD is reconfigured (e.g., in an on-the-fly reconfiguration
procedure). Thus, techniques are disclosed herein to control
the state of the logic within the PLD prior to exiting the
configuration process, which allows the device logic to drive
the correct levels on its outputs immediately and provide a
known State exit and seamless transfer to user logic, when
control of I/O is passed back to the PLD logic at the end of the
configuration cycle.

Embodiments described above illustrate but do not limit
the invention. It should also be understood that numerous
modifications and variations are possible in accordance with
the principles of the present invention. Accordingly, the scope
of the invention is defined only by the following claims.
What is claimed is:
1. A programmable logic device comprising:
a plurality of logic blocks;
a plurality of registers, wherein the logic blocks and the

registers are within a user programmable logic area;
a plurality of input/output blocks, wherein the plurality of

input/output blocks include boundary scan cells adapted
to precondition the registers with desired signal values,
prior to release of control of the input/output blocks to
user-defined logic provided by a reconfiguration of the

US 7,459,931 B1
13

programmable logic device, such that the registers pro
vide the desired data values after the reconfiguration;

configuration memory cells adapted to store first configu
ration data for configuration of the logic blocks and the
input/output blocks of the programmable logic device;

a volatile memory block adapted to store data within the
programmable logic device; and

a circuit adapted to preserve the data for the volatile
memory during the reconfiguration of the program
mable logic device, wherein the circuit comprises:
a non-volatile memory block adapted to store data trans

ferred from the volatile memory block prior to the
reconfiguration and return the data to the Volatile
memory block prior to entering user mode after the
reconfiguration, wherein the non-volatile memory
block is further adapted to store second configuration
data and transfer the second configuration data to the
configuration memory cells for the reconfiguration of
the programmable logic device; and

a control circuit adapted to control transfer of the data
between the non-volatile memory block and the vola
tile memory block and further adapted to control
transfer of the second configuration data to the con
figuration memory cells.

2. The programmable logic device of claim 1, wherein the
Volatile memory block comprises a user register, and wherein
the circuit comprises a latch circuit adapted to capture a data
value stored in the user register and provide the data value for
the user register during the reconfiguration.

3. The programmable logic device of claim 1, wherein the
Volatile memory block comprises a user register, and wherein
the circuit comprises a multiplexer adapted to selectively
capture a data value stored in the user register or a second data
value and provide to a preload data terminal of the user
register.

4. The programmable logic device of claim 1, wherein the
Volatile memory block comprises one of the configuration
memory cells, and wherein the circuit comprises a latch cir
cuit adapted to capture a data value stored in the configuration
memory cell and provide the data value for the configuration
memory cell during the reconfiguration.

5. The programmable logic device of claim 1, wherein the
Volatile memory block comprises one of the configuration
memory cells configured to control a personality aspect of
one of the input/output blocks, and wherein the circuit com
prises a latch circuit adapted to capture a data value stored in
the configuration memory cell and provide the data value for
the configuration memory cell during the reconfiguration.

6. The programmable logic device of claim 1, further com
prising at least a first data port adapted to receive commands
for controlling the reconfiguration of the programmable logic
device.

7. The programmable logic device of claim 1, wherein the
boundary scan cells are further adapted to capture current
output values of the corresponding input/output blocks or
receive values provided to the programmable logic device and
provide the captured or received values as output signals from
the programmable logic device during the reconfiguration of
the programmable logic device.

8. A programmable logic device comprising:
a plurality of logic blocks;
a plurality of registers, wherein the logic blocks and the

registers are within a user programmable logic area;
an input/output block, wherein the input/output block com

prises a boundary scan cell adapted to precondition at
least one of the registers with a desired signal value,
prior to release of control of the input/output block to

10

15

25

30

35

40

45

50

55

60

65

14
user-defined logic provided by a reconfiguration, Such
that the register provides the desired data value after the
reconfiguration;

a volatile memory block adapted to store data within the
programmable logic device;

configuration memory cells adapted to store first configu
ration data for configuration of the logic blocks, the
input/output blocks, and the volatile memory block of
the programmable logic device;

a non-volatile memory block having a first section adapted
to receive data from the volatile memory block prior to
the reconfiguration for transfer back to the volatile
memory block prior to entering a user mode of operation
after the reconfiguration, wherein the non-volatile
memory block further includes a second section adapted
to store second configuration data to transfer to the con
figuration memory cells during the reconfiguration; and

a control circuit adapted to control the transfer of the data
between the non-volatile memory block and the volatile
memory block to save the data during the reconfigura
tion and to control the transfer of the second configura
tion data from the non-volatile memory block to the
configuration memory cells to reconfigure the program
mable logic device.

9. The programmable logic device of claim8, further com
prising:

a user register; and
a latch circuit adapted to capture a data value stored in the

user register and provide the data value for the user
register during the reconfiguration.

10. The programmable logic device of claim 8, further
comprising:

a user register; and
a multiplexercircuit adapted to selectively capture a data

value stored in the user register or a second data value
and provide to a preload data terminal of the user register
to provide the data value or the second data value from
the user register after the reconfiguration.

11. The programmable logic device of claim 8, further
comprising a latch circuit adapted to capture a data value
stored in one of the configuration memory cells and provide
the data value for the configuration memory cell during the
reconfiguration to retain a personality aspect of the input/
output block during the reconfiguration.

12. The programmable logic device of claim 8, wherein the
boundary scan cell is further adapted to capture a current
output value of the input/output block or receive a value
provided to the programmable logic device and provide the
captured or received value as an output signal from the pro
grammable logic device during the reconfiguration of the
programmable logic device.

13. A method of reconfiguring a programmable logic
device, the method comprising:

performing a background programming operation of the
programmable logic device prior to a reconfiguring;

transferring data from a volatile memory block to a non
Volatile memory block prior to the reconfiguring;

transferring the data from the non-volatile memory block
to the Volatile memory block during the reconfiguring
such that the data is available within the volatile memory
block after the reconfiguring;

capturing input/output states prior to the reconfiguring to
provide during the reconfiguring;

copying configuration data from the non-volatile memory
block to configuration memory for the reconfiguring;

reconfiguring the programmable logic device;

US 7,459,931 B1
15

preserving at least one data value of a volatile memory
during the reconfiguring; and

providing a desired data value to the programmable logic
device to precondition a register within a user logic area

16
providing from the programmable logic device, during the

reconfiguring, at least one of the captured output signal
values and desired output signal values.

18. The method of claim 13, wherein the volatile memory
of the programmable logic device, prior to release of 5 comprises a volatile memory block, and wherein the preserv
control to user-defined logic provided by the reconfig
uring, Such that the register provides the desired data
value after the reconfiguring.

14. The method of claim 13, wherein the volatile memory
comprises a user register, and wherein the preserving com
prises latching and providing the data value during the recon
figuring.

15. The method of claim 13, wherein the volatile memory
comprises a user register, and wherein the preserving com

10

prises providing the data value to a preload data terminal of 15
the user register to provide the data value from the user
register after the reconfiguring.

16. The method of claim 13, wherein the volatile memory
comprises a configuration memory cell for an input/output
block, and wherein the preserving retains a personality aspect
of the input/output block during the reconfiguring.

17. The method of claim 13, further comprising:
capturing current output signal values of the program

mable logic device; and

ing comprises:
transferring the at least one data value from the volatile
memory block to non-volatile memory prior to the
reconfiguring; and

transferring the at least one data value during the reconfig
uring from the non-volatile memory to the volatile
memory block.

19. The method of claim 13, further comprising perform
ing a background programming operation of the program
mable logic device prior to the reconfiguring.

20. The method of claim 13, further comprising altering at
least one of the captured input/output states prior to providing
during the reconfiguring.

21. The method of claim 13, further comprising preserving
at least one user register value and at least one input/output
personality through the reconfiguring.

k k k k k

