
US007095247B1

(12) United States Patent (10) Patent No.: US 7,095,247 B1
Tang et al. (45) Date of Patent: Aug. 22, 2006

(54) CONFIGURING FPGAS AND THE LIKE 2004/0064622 A1* 4/2004 Smith T10,305
USING ONE OR MORE SERIAL MEMORY
DEVICES OTHER PUBLICATIONS

MAX II Device Handbook, vol. 1, Chapter 3, JTAG & In-System
(75) Inventors: Howard Tang, Cupertino, CA (US); Programmability. Altera Corporation, Dec. 2004, pp. 3-1 through

Satwant Singh, Fremont, CA (US); 3-8. Atmel Datasheet entitled “FPGA Configuration EEPROM Memory
3.3V and 5V System Support”, Rev. 2321 E-CNFG-Jun. 2003, pp.
1-23.
Altera Corporation, press release of Sep. 30, 2002, "Altera Intro
duces Industry's Lowest Cost Confuguration Device Famy”0.
Altera Corporation, Cyclone Device Handbook, vol. 1, Chapters

(*) Notice: Subject to any disclaimer, the term of this 13-14 May-Oct. 2003).
patent is extended or adjusted under 35 k .
U.S.C. 154(b) by 51 days. cited by examiner

Primary Examiner Vibol Tan

Ann Wu, San Jose, CA (US)

(73) Assignee: Lattice Semiconductor Corporation,
Hillsboro, OR (US)

(21) Appl. No.: 10/809,658
57 ABSTRACT

(22) Filed: Mar. 25, 2004 (57)
The configuration architecture for a programmable device,

(51) Int. Cl. such as an FPGA, includes one or more memory devices
HO3K 7/38 (2006.01) connected directly to the FPGA such that the FPGA can be

(52) U.S. Cl. 326/38: 326/39;365/189.01; configured with configuration data stored in the memory
365/230.01: 365/230.02 devices without transmitting the configuration data via a

(58) Field of Classification Search 326/38 41; controller connected between any of the memory devices
365/189.01, 221, 230.01, 230.02 and the FPGA. In one embodiment, the FPGA has an Serial

See application file for complete search history. Peripheral Interface (SPI) that is connected to the SPI
interface of each of one or more SPI Serial flash PROMs

(56) References Cited operating as boot PROMs. When there are two or more boot
U.S. PATENT DOCUMENTS PROMs, each PROM stores a portion of the FPGA's con

figuration data and the FPGA interleaves the data from
5,794,033 A * 8/1998 Aldebert et al. T13/100 multiple boot PROMs to generate a serial configuration data
6,038,185 A * 3/2000 Ng et al. 365,221 bitstream. The present invention enables boot PROMs hav
6,044,025 A ck 3/2000 Lawman ing different sizes and/or storing different amounts of con
E. R ck S. SIRI, al. iRIS figuration data to be simultaneously connected to an FPGA
6,567,518 B1* 5/2003 Weir to support efficient configuration architectures.
6,785,165 B1* 8/2004 Kawahara et al. 365, 18528

2004/006 1147 A1* 4/2004 Fujita et al. 257/232 40 Claims, 7 Drawing Sheets

602
S

FCPA
CCK
CSSPN
SISPI/BUSY
SOSP/DO

SP PROM
SO

SP PROM 2
SOSP/D

SOSPI/D (27)

SO

604-1

U.S. Patent Aug. 22, 2006 Sheet 1 of 7 US 7,095,247 B1

S

s :

YN

S

U.S. Patent Aug. 22, 2006 Sheet 2 of 7 US 7,095,247 B1

FIG. 2
(PRIOR ART)

204 206 202

FLASH DRE CONTROLLER
PARALLEL
PROM

FIC. 3
(PRIOR ART)

06

US 7,095,247 B1 U.S. Patent

US 7,095,247 B1 U.S. Patent

U.S. Patent Aug. 22, 2006 Sheet 5 of 7 US 7,095,247 B1

SP SERIAL
FLASH
DEVICEO

604-7

SPI SERIAL
FLASH
DEVICE #7

SERIAL BITSTREAN
FOR THE DEVICE

CCK
DIY BY THE
COUNTER
SETTING INTERNAL

OSCILLATOR
620

U.S. Patent Aug. 22, 2006 Sheet 6 of 7 US 7,095,247 B1

602

FGPA
CCK
CSSPN
SISPI/BUSY
SOSPI/DO

3 SPI PROM 604-0
SO

SP PROM 2
SO

NC

SOSP/D

SOSPI/D (2:7)

604-1

FIC. 7

8 "f)IJI

(?X (X, X (XIII,

US 7,095,247 B1 Sheet 7 of 7

rur

n

| 7 |

var

to e

s
al

cal
/

es
O
sta
la
N
Co
H

Aug. 22, 2006 U.S. Patent

US 7,095,247 B1
1.

CONFIGURING FPGAS AND THE LIKE
USING ONE OR MORE SERIAL MEMORY

DEVICES

TECHNICAL FIELD

The present invention relates to programmable devices,
Such as field-programmable gate arrays (FPGAs), and, in
particular, to techniques for configuring Such devices using
external memory devices.

BACKGROUND

Volatile programmable devices, such as FPGAs, typically
rely on external storage media to hold the bitstreams used to
configure the devices. For example, programmable read
only memory (PROM) devices are often used to hold the
configuration bitstreams for FPGAs. Such devices are
referred to as “boot PROMs, because they are used to boot
(i.e., initialize) programmable devices, such as volatile
FPGA.S.

FIG. 1 shows a block diagram of one conventional
architecture for configuring an FPGA 102 in which a parallel
PROM device 104 is used as the boot PROM. As shown in
FIG. 1, for a typical FPGA having about 8 million bits of
configuration data, a (disadvantageously large) total of 29
FPGA pins are dedicated to this configuration architecture
(i.e., 1 pin for the chip select signal (/CS), one pin for the
configuration clock signal (SCLK), eight pins for data, and
19 pins for addressing). Another disadvantage of this solu
tion is the relatively large package size of parallel PROMs,
which require a relatively larger amount of PCB board
Space.

FIG. 2 shows a block diagram of another conventional
architecture for configuring an FPGA 202 using a parallel
PROM 204 as the boot PROM, in which a controller 206
(e.g., a complex programmable logic device (CPLD) or a
micro-controller) provides an interface between the parallel
PROM and the FPGA. In order to reduce the number of pins
consumed on the FPGA, controller 206 handles the address
ing into PROM 204 and converts the parallel data received
from PROM 204 into serial data for transmission to FPGA
202 via a single FPGA pin (DIN).

FIG.3 shows a block diagram of yet another conventional
architecture for configuring an FPGA302, in this case, using
a serial PROM 304 as the boot PROM, where a micro
controller 306 forms the interface between the PROM and
the FPGA. In one possible implementation, serial PROM
304 is a non-volatile serial flash PROM that interfaces with
an industry-standard Serial Peripheral Interface (SPI) on
micro-controller 306.

Although these controller-based solutions of FIGS. 2 and
3 reduce the number of FPGA pins consumed, they do so at
the increased cost of having to provide two chips to con
figure an FPGA: one chip for the memory device and one
chip for the controller.

Companies, such as Atmel Corporation of San Jose,
Calif., manufacture serial PROM devices as FPGA configu
ration devices that interface directly to FPGAs (i.e., without
an intermediary controller); however, these non-standard
serial PROMs are proprietary and therefore typically more
expensive than standard serial PROMs.

SUMMARY

Problems in the prior art are addressed in accordance with
the principles of the present invention by architectures for

10

15

25

30

35

40

45

50

55

60

65

2
configuring a programmable device, such as a volatile
FPGA, using one or more standard memory devices (e.g.,
SPI serial flash PROMs) to store and provide the configu
ration data to the programmable device, without transmitting
the configuration data via an intermediary controller con
nected between the programmable device and the memory
device(s).

BRIEF DESCRIPTION OF THE DRAWINGS

Other aspects, features, and advantages of the present
invention will become more fully apparent from the follow
ing detailed description, the appended claims, and the
accompanying drawings in which like reference numerals
identify similar or identical elements.

FIG. 1 shows a block diagram of one conventional
architecture for configuring an FPGA in which a parallel
PROM device is used as the boot PROM;

FIG. 2 shows a block diagram of another conventional
architecture for configuring an FPGA using a parallel PROM
as the boot PROM, in which a controller provides an
interface between the PROM and the FPGA:

FIG.3 shows a block diagram of yet another conventional
architecture for configuring an FPGA, in this case, using a
serial PROM as the boot PROM, where a micro-controller
forms the interface between the PROM and the FPGA:

FIG. 4 shows a block diagram of an architecture for
configuring an FPGA, according to one embodiment of the
present invention;

FIG. 5 shows a signal timing diagram for a boot cycle for
the architecture of FIG. 4;

FIG. 6 shows a block diagram of an architecture for
configuring an FPGA, according to another embodiment of
the present invention;

FIG. 7 shows a block diagram of an architecture for
configuring the FPGA of FIG. 6, when the FPGA is con
nected to only a pair of SPI serial flash PROMs: and

FIG. 8 shows a signal timing diagram for a portion of a
boot cycle for the architecture of FIG. 7.

DETAILED DESCRIPTION

Single PROM Architecture
FIG. 4 shows a block diagram of an architecture for

configuring an FPGA 402, according to one embodiment of
the present invention. As shown in FIG. 4, a conventional
SPI Serial flash PROM device 404 is used as the boot
PROM, where SPI interface 408 of PROM 404 is connected
directly to an SPI interface 406 implemented within FPGA
402. As understood by those skilled in the art, a Serial
Peripheral Interface (SPI) conforms to an industry standard
specified by Motorola Corporation of Schaumburg, Ill. In a
preferred implementation, SPI interface 406 of FPGA 402 is
implemented using dedicated circuitry, although, in alterna
tive implementations, the SPI interface could be imple
mented—at least partially or even entirely—using the
FPGA's programmable logic.

In addition to the connections between PROM 404 and
FPGA 402, the architecture of FIG. 4 shows a number of
connections (1) between a central processing unit (CPU) (or
other external controller) (not shown in FIG. 4) and the
FPGA (e.g., at the PROGN, DONE, and ININ pins) and (2)
between the CPU and the PROM (e.g., at the /RESET pin).
These connections are used for high-level control (e.g., start,
Suspend, resume, stop) over the process of configuring the
FPGA (also referred to as the “boot cycle').

US 7,095,247 B1
3

The following list defines the signals transmitted via the
labeled pins on PROM 404 used in the architecture of FIG.
4:

/CS: Chip select signal, received from the FPGA, used to
enable the PROM to receive the read command and the
starting address and to read out configuration command
and data after the read command is received.

SCK: Configuration clock signal, received from the
FPGA, used to control the timing of reading serial
configuration data out from the PROM.

SI: Tristate input signal, received from the FPGA. Return
to-Zero (RZ) high and low levels indicate bit values “1”
and “O'”, respectively, of the command, then the starting
address of the configuration data.

SO: Upon receiving the read command and starting
address on the SI pin, serial output signal used to
transmit a serial stream of Stored configuration com
mand and data to the FPGA. This is also a tristate
signal, where high and low levels indicate bit values
“1” and “O'”, respectively, and the tristated condition
indicates no data.

/RESET: (Optional) reset signal, received from the CPU
or FPGA, used to re-initialize the PROM to the begin
ning of the configuration data.

The following list defines the signals transmitted via the
labeled pins on FPGA 402 used in the architecture of FIG.
4:
CSSPIN: Chip select signal sent to the /CS pin of the
PROM.

CCLK: Configuration clock signal sent to the SCK pin of
the PROM.

SISPI/BUSY: Read command and starting address/busy
signal sent to the SI pin of the PROM.

SOSPI/D0: “Data in signal received from the SO pin of
the PROM.

PROGN: “Boot on signal, received from the CPU, used
to inform the FPGA that a boot cycle is beginning.

DONE: Used by the FPGA to indicate that the boot cycle
is complete and Successful.

INITN: Used by the FPGA to indicate that the boot cycle
is to begin and complete with Success.

CFGO-2: Three-bit configuration mode selection signal
CFG, used to select one of the eight possible configu
ration options supported by the FPGA. The configura
tion modes include:
SPIO3 mode: The FPGA Sends the 8-bit read command
opcode 00000011 (03 in hexadecimal) to the SI pin
of the SPI PROM. The opcode 03 is said to be
hardwired inside the FPGA. Certain SPI PROMs
manufactured by STMicroelectronics NV expect the
read command opcode to be 03.

SPIX mode: The FPGA reads the 8-bit read command
opcode from the D0 . . . D7 pins of the FPGA and
then sends the opcode to the SI pin of the SPI PROM.
This mode is selected if the 8-bit read command
opcode of the SPI PROM is 03 or any others. The
read opcode is user programmable. The SPI PROM
manufactured by ATMEL Corp. expects the read
command opcode to be 01101000 (68 in hexadeci
mal).

In the prior art architectures of FIGS. 2–3, the FPGA
operated as a slave device during the boot cycle in that the
FPGA only received commands and did not generate any
commands for the memory device while performing con
figuration. As implied by the pin definitions listed above,
however, in addition to being able to receive boot commands
and data (e.g., via the PROGN, DONE, and INIT pins),

5

10

15

25

30

35

40

45

50

55

60

65

4
FPGA 402 of the present invention is also capable of
independently generating (e.g., without relying on the CPU)
boot commands for the PROM, such as the read command
and the starting address (e.g., via the SISPI/BUSY and
CSSPIN pins) or instructions to begin to read data from all
of the boot PROMs. To this extent, the FPGA operates as a
master device, at least relative to the PROM. When the
PROM receives the read command and the starting address,
the SO pin is changed from tri-state to the enable state in
order to read out the configuration command and data stored
in the device. It is presented to SO per each SCLK clock.

FIG. 5 shows a signal timing diagram for a boot cycle for
the architecture of FIG. 4. During the entire timing diagram,
VCC (not shown in FIG. 4) is high, indicating that the FPGA
is powered on. At time T1, the CPU makes PROGN, an
active-low signal, low to instruct the FPGA that a boot cycle
is beginning. Soon after, at time T2, the FPGA makes (1)
DONE low (indicating that the boot cycle is not yet com
plete) and (2) (active-low signal) INITN temporarily low
(instructing the PROM to reset its pointer to the beginning
of the stored configuration data).
From the time that the FPGA makes INITN high again at

time T3 until time T4, the FPGA is able to capture the
configuration mode CFG, which in this case is (000) indi
cating that the FPGA is set up into the SPIO3 configuration
mode (e.g., the read opcode 03 will be send to the SPI
PROM).

During the interval from time T0 to time T4, the status of
CCLK is irrelevant, as indicated by shading. At time T4, the
FPGA makes CCLK low. At time T5, the FPGA makes
(active-low signal) CSSPIN low, enabling the PROM to be
ready to receive commands from the FPGA and then transfer
configuration command and data to the FPGA.
At time T6, the FPGA begins to send the read command

and then the starting address on the SISPI/BUSY pin, and,
soon after, at time T7, the FPGA starts to generate the
configuration clock signal CCLK (starting at clock cycle 0)
using a default clock rate (e.g., based on a clock internal to
the FPGA). During the first eight clock cycles (i.e., labeled
0 to 7), the FPGA uses SISPI/BUSY to send to the PROM
the starting address of the configuration data in the PROM.
From clock cycle #8 through clock cycle #127, the PROM

transfers configuration overhead data to the FPGA via
SOSPI/D0. The FPGA ignores this over-head (dummy data)
to give the PROM device ample time to switch from tri-state
to the enable state and begin presenting valid configuration
command and data on the SO pin of the PROM device.
At the end of clock cycle # 127, the PROM, having

exhausted the dummy data, begins to transfer valid configu
ration command and data one bit at a time to the FPGA via
SOSPI/D0. The transfer of configuration command and data
continues until all of the data has been read (at time T8), at
which time the FPGA makes (1) DONE high (informing the
CPU that the boot cycle is complete) and (2) CSSPIN high
(disabling the PROM from sending any more configuration
data). From then on, the value of the configuration clock
CCLK is again irrelevant, as indicated by shading.
Multiple PROM Architecture

FIG. 6 shows a block diagram of an architecture for
configuring an FPGA 602, according to another embodiment
of the present invention. As shown in FIG. 6, FPGA 602 is
connected to a stack of eight different SPI serial flash PROM
devices 604-0 to 604-7.

In particular, the SPI interface 608 of each boot PROM
604 is connected to SPI interface 606 of FPGA 602, where
SPI interface 606 has eight different “data in” pins SOSPI/

US 7,095,247 B1
5

D0 to SOSPI/D7, each of which is connected to the SO pin
of one of the eight PROMs, while each of the CSSPIN,
CCLK, and SISPI/BUSY pins of FPGA 602 is simulta
neously connected to the /CS, SCLK, and SI pins, respec
tively, of all eight PROMs. The definitions of these pins are
analogous to the pin definitions given above for the archi
tecture of FIG. 4. Although not shown in FIG. 6, FPGA 602
also has pins analogous to the PROGN, DONE, and INITN
pins of FPGA 402 of FIG. 4, and each PROM 604 has an
optional pin analogous to the /RESET pin of PROM 404 of
FIG. 4.

In FIG. 6, the three configuration mode pins CFGO-2 are
not shown as being connected to ground. CFGO-2 pins can
be set, for example, to 000 in order to select the SPIO3 mode
to send the read command opcode 03, or to 100 in order to
select the SPIX mode to send the programmable read
command opcode to the PROM devices in parallel. In
general, the configuration command embedded in the bit
Stream Stored in the PROM device connected to the SISPI/
D0 pin of the FPGA indicates how many boot PROMs are
currently connected to the FPGA in a particular architecture.

In addition, FIG. 6 shows FPGA 602 having a pin D0,
which can be used in configurations having two or more
FPGAs connected in a daisy-chain fashion, to enable the
configuration command and data to be bypassed or overflow
to the next FPGA device in the daisy chain.

FIG. 6 also has an insert 610 showing a blown-up view of
the portion of SPI interface 606 of FPGA 602 corresponding
to the data input pins SOSPI/D0 to SOSPI/D7 and the
configuration clock output pin CCLK. As shown in insert
610, SPI interface 606 has an 8:1 multiplexer (mux) 612 that
serializes the eight different serial data streams received
from the eight different PROMs 604 to generate serial
bitstream 614, which is further appropriately distributed and
processed within the FPGA to configure the FPGA using
standard FPGA configuration processing.
As described previously, FPGA 602 can be connected to

any number of boot PROMs from one to eight. Timing
controller 616 generates a three-bit mux control signal 618
to control the operations of muX 612 to properly generate
serial bitstream 614 from the serial data streams received
from the existing boot PROMs. In one implementation,
control signal 618 corresponds to bits 28, 29, and 30 of
control register 0 in the FPGA. In general, control signal 618
is initialized to (000), which causes mux 612 to output serial
data received at the SOSPI/D0 pin from PROM 604-0.
Similarly, when the command is received by the FPGA to set
control signal 618 is (001), mux 612 outputs serial data
received at the SOSPI/D1 pin from PROM 604-1, and so on
for the rest of the serial data received at and from the other
pins and PROMs.

Timing controller 616 changes the value of mux control
signal 618 based on (1) a local clock signal 620 generated by
an internal oscillator (not shown) and (2) a counter setting
622 that is equal to the number of boot PROMs that are
currently connected to the FPGA and which currently have
configuration data to transmit to the FPGA. In addition,
timing controller 616 generates the configuration clock
signal CCLK, which is transmitted to the SCK pin of each
boot PROM, as local clock signal 620 divided by counter
setting 622.

For example, for the architecture of FIG. 6, in which eight
boot PROMs simultaneously transmit serial data to the
FPGA, timing controller 616 changes the value of mux
control signal 618 at every cycle of local clock signal 620,
e.g., to cycle through the eight different muX inputs in a
sequential circular manner, while the configuration clock

10

15

25

30

35

40

45

50

55

60

65

6
signal CCLK cycles once for every eight cycles of local
clock signal 620. In this way, one bit from each boot PROM
is interleaved by mux 612 to form one byte of serial
bitstream 614 during every cycle of the configuration clock
signal CCLK.
As another example, if FPGA 602 were connected to only

four boot PROMs (e.g., at SOSPI/D0 though SOSPI/D3),
then counter setting 622 would equal four, the configuration
clock signal CCLK would cycle once for every four cycles
of local clock signal 620, and one bit from each of the four
boot PROMs would be interleaved by mux 612 to form
four-bits of serial bitstream 614 during every cycle of the
configuration clock signal CCLK.

This pattern can be analogously extended to architectures
having the other numbers of boot PROMs (i.e., one, two,
three, five, six, and seven), with appropriate dividing of the
local clock signal and corresponding control over the muX.
The present invention can also be extended to architectures
having more than eight boot PROMs by using larger muxes
and corresponding control algorithms.

In a preferred embodiment, a boot PROM is always
connected to SOSPI/D0, any second boot PROM is con
nected to SOSPI/D1, any third boot PROM is connected to
SOSPI/D2, and so on for however many boot PROMs there
are. While this connection rule simplifies the implementa
tion of timing controller 616, alternative embodiments hav
ing more complicated timing controllers may be able to
Support alternative connection schemes.
As mentioned previously, counter setting 622 identifies

the number of boot PROMs that are currently connected to
the FPGA and which currently have configuration data to
transmit to the FPGA. In a preferred implementation, FPGA
602 is capable of (1) reading different amounts of configu
ration data from different boot PROMs and (2) being simul
taneously connected to boot PROMs having different sizes.
For example, assume that FPGA 602 can store up to three
million bits of configuration data. In that case, FPGA 602
could be connected to a single standard-sized 4-Mbit SPI
serial flash PROM that provides the configuration data to the
FPGA, but this would involve a waste of 1 Mbits of capacity.
Alternatively, FPGA 602 could be connected to three stan
dard-sized 1-Mbit SPI serial flash PROMs, each of which
provides /3 of the configuration data to the FPGA.

In another architecture, FPGA 602 is connected to one
standard-sized 2-Mbit SPI serial flash PROM and one stan
dard-sized 1-Mbit SPI serial flash PROM, where the 2-Mbit
PROM stores 2/3 of the configuration data and the 1-Mbit
PROM stores the rest (i.e., /3). In this case, with the 2-Mbit
PROM connected to SOSPINDO and the 1-Mbit PROM
connected to SOSPI/D1, FPGA 602 could initially read and
interleave data from both boot PROMs for the first 2 Mbits
of configuration data and then change its clock timing and
mux control to read the last 1 Mbits of configuration data
from only the 2-Mbit PROM. In this way, FPGA 602 can be
efficiently configured using a minimal number of standard
sized boot PROMs.

Although FPGA 602 can be connected simultaneously to
two of more boot PROMs of different sizes and storing
different amounts of data, it is also possible to (1) connect
FPGA 602 to two or more boot PROMs of the same size,
which store different amounts of data or (2) connect FPGA
602 to two or more boot PROMs of different sizes, which
nevertheless store the same amount of data.

In a preferred embodiment, the value for counter setting
622 is based on the configuration modesignal CFG and from
information contained in the configuration data stored in the
different boot PROMs. For example, FPGA 602 may be

US 7,095,247 B1
7

designed to initially read data from only the first boot
PROM. Information encoded in that data instructs the FPGA
when to begin to read data from other connected boot
PROMs, if any (as indicated by the configuration mode
signal CFG). Similarly, information encoded in Subsequent
configuration data can be used to inform the FPGA when one
or more of the boot PROMs are running out of configuration
data to transmit.

In a preferred implementation of FPGA 602, larger boot
PROMs and/or boot PROMs having more configuration data
are connected to lower numbered data bits (e.g., SOSPI/D0,
rather than SOSPI/D7), although this is not necessarily
required for all implementations.

FIG. 7 shows a block diagram of an architecture for
configuring FPGA 602 of FIG. 6, when FPGA 602 is
connected to only a pair of SPI serial flash PROM devices
604-0 and 604-1. In this case, the SOSPI/D0 pin of FPGA
602 is connected to receive data from the SO pin of PROM
604-0 and the SOSPI/D1 pin of FPGA 602 is connected to
receive data from the SO pin of PROM 604-1, while the
SOSPI/D2-7 are not connected (NC) to any boot PROMs. In
this case, mux 612 of FIG. 6 interleaves the configuration
data from the two PROMs to generate the serial bitstream
used to configure the FPGA.

Although not necessarily depicted in FIG. 7, FPGA 602
and each PROM 604 has all of the analogous connections
shown for the FPGAs and PROMs of FIGS. 4 and 6. For
example, in this case, FPGA 602 would receive a configu
ration mode signal CFG of (001) to indicate that the FPGA
is connected to two PROMs.

FIG. 8 shows a signal timing diagram for a portion of a
boot cycle for the architecture of FIG. 7. In FIG. 8,
CCLK int corresponds to local clock signal 620 of FIG. 6.
Similarly, DATA int corresponds to serial bitstream 614 of
FIG. 6.
As indicated in FIG. 8, after FPGA 602 sends the read

command and the starting address to the two boot PROMs
604-0 and 604-1 in parallel via SISPI/BUSY (similar to the
processing represented in FIG. 5), the FPGA begins by
reading the data coming out of only one boot PROM (604-0
in this implementation). Any data coming out of the other
boot PROM 604-1 is ignored until the command not to
ignore it (i.e., SISPI/BUSY going from low to tristated as in
FIG. 5) is received.

This initial processing of only boot PROM 604-0 data is
represented in FIG. 8 prior to time T1. As shown in FIG. 8,
during this initial time period, the configuration clock signal
CCLK sent from the FPGA to both boot PROMs is set equal
to the internal clock CCLK int. In response, both boot
PROMs transmit data to the FPGA at that clock rate, but, by
appropriately controlling muX 612, the data from only
PROM 604-0 (i.e., SOSPI/D0) is used to generate the
internal serial bitstream DATA int, while the data from
PROM 604-1 (i.e., SOSPI/D1) is ignored.

FIG. 8 represents the last four bits (i.e., Bits 28–31) of a
32-bit (in this particular example) control signal transmitted
from PROM 604-0 to the FPGA during this initial time
period. This control signal, which is immediately interpreted
by the FPGA, has embedded within it the command to
instruct the FPGA to start processing (in this case, at time
T1) the bitstream(s) coming out of the rest of the boot
PROMs in the architecture (in this case, the one other
bitstream coming out of the one other boot PROM 604-1).
Time T1 of FIG. 8 is analogous to the start of clock cycle
H128 in FIG. 5.

Thus, at time T1, based on the fact that the configuration
control mode signal CFG indicated that there are two boot

10

15

25

30

35

40

45

50

55

60

65

8
PROMs, the FPGA changes the rate of the configuration
clock signal CCLK to be half the rate of its internal clock
signal CCLK int. This causes the two boot PROMs to begin
to transmit configuration data at half the rate as they did
before time T1.

Similar to the processing described previously for FIG. 6,
mux 612 within FPGA 602 receives data from both boot
PROMs and interleaves then at the bit level to generate the
internal serial bitstream DATA int. As represented in FIG. 8,
boot PROM 604-0 stores all of the even numbered configu
ration data bits, while boot PROM 604-1 stores all of the odd
numbered configuration data bits. In response to CCLK
clock cycle #0, PROM 604-0 transmits configuration data
Bit 0 to the FPGA at the same time that PROM 604-1
transmits configuration data Bit 1 to the FPGA. During
CCLK int clock cycle #0, the mux passes Bit 0 received
from SOSPI/D0 to DATA int. Then, during CCLK int
clock cycle #1, the mux passes Bit 1 received from SOSPI/
D1 to DATA int. This data interleaving process continues as
long as there is valid configuration data transmitted from
both boot PROMs. (Note that, as indicated in FIG. 8, the
FPGA's six other boot PROM data input pins (i.e., SOSPI/
D2-D7) are ignored throughout the boot cycle.)

If boot PROM 604-1 stores less configuration data then
boot PROM 604-0, then the data from PROM 604-1 will be
exhausted ahead of the data from PROM 604-0. In that case
(not represented in FIG. 8), the configuration data will
contain control data to instruct the FPGA to stop processing
data from PROM 604-1. When that occurs, the FPGA will
return the configuration clock signal CCLK back to its
original rate and the FPGA's mux will return to passing data
from only PROM 604-0 on to DATA int.

In general, the FPGA can be controlled to include or
exclude data from any one or any combination of boot
PROMs in the serialization process. As described previ
ously, in this way, the FPGA can selectively stop reading
from a boot PROM when all the configuration data stored in
that particular PROM has been transferred to the FPGA.
This capability enables the FPGA to be connected simulta
neously to multiple boot PROMs having different sizes (or
densities). For example, if the configuration bitstream for an
FPGA is three million bits, but the standard sizes of PROMs
are 1 Mbits, 2 Mbits, and 4 Mbits, then the FPGA configu
ration architecture can be efficiently implemented using two
standard-sized PROMs as its multiple boot PROMs: a 1
Mbit PROM and a 2 Mbit PROM. This solution may be
more advantageous that either (1) a single-PROM architec
ture that uses a single 4 Mbit PROM (which wastes 1 Mbits
of capacity) or (2) a three-PROM architecture that uses three
1 Mbit PROMs (which has a higher device count).

In any case, after the FPGA has received all of its
configuration data from the boot PROMs, the FPGA will
terminate communication with all of the boot PROMs by
driving the chip select signal CSSPIN high to disable all of
the boot PROMs.

Although the present invention has been described in the
context of bit-level interleaving of configuration data from
different boot PROMs, those skilled in the art will under
stand that, in alternative embodiments, the interleaving can
be implemented at levels other than a single bit (e.g., at a
byte level). Such embodiments might have different timing
characteristics and might need to provide buffering of con
figuration data prior to the actual interleaving.

Although the present invention has been described in the
context of FPGAs, those skilled in the art will understand
that the present invention can be implemented in the context
of other types of programmable devices, such as, without

US 7,095,247 B1
9

limitation, programmable logic devices (PLDS), mask-pro
grammable gate arrays (MPGAS), simple programmable
logic device (SPLDS), and complex programmable logic
devices (CPLDs). More generally, the present invention can
be implemented in the context of any kind of electronic
device that requires configuration data.

Although the present invention has been described in the
context of embodiments in which serial PROMs are used to
store configuration data, in other embodiments, other types
of memory devices can be used, including (1) other types of
serial memory devices, such as serial random access
memory (RAM) devices, and (2) even non-serial memory
devices. For example, in theory, the present invention could
be implemented using two or more parallel memory devices
to store configuration data, where each memory device has
two (or more) parallel output data pins that get connected
directly to a corresponding number of pins on the program
mable device being configured.

It will be further understood that various changes in the
details, materials, and arrangements of the parts which have
been described and illustrated in order to explain the nature
of this invention may be made by those skilled in the art
without departing from the scope of the invention as
expressed in the following claims.
We claim:
1. A programmable device comprising a Serial Peripheral

Interface (SPI) adapted to be connected in parallel to an SPI
interface of each of two or more SPI serial memory devices
Such that the programmable device is adapted to receive a
different portion of configuration data stored in each SPI
serial memory device without transmitting the configuration
data via a controller connected between the SPI serial
memory devices and the programmable device.

2. The invention of claim 1, wherein:
the programmable device is an FPGA; and
each SPI serial memory device is an SPI serial flash
PROM.

3. The invention of claim 1, wherein the programmable
device is adapted to independently generate at least one
command adapted to control operations of each SPI serial
memory device during configuration of the programmable
device.

4. The invention of claim 1, wherein the programmable
device is adapted to generate a message to inform each SPI
serial memory device of a starting address to be used to
transfer the configuration data stored in said each SPI serial
memory device to the programmable device.

5. The invention of claim 1, wherein the programmable
device is adapted to receive instructions to ignore data from
at least one of the SPI serial memory devices.

6. The invention of claim 5, wherein the programmable
device is adapted to retrieve the instructions from the
configuration data.

7. The invention of claim 1, wherein the programmable
device is adapted to be instructed, based on information
contained in the configuration data, as to how to interpret the
different portions of the configuration data received from the
different SPI serial memory devices.

8. The invention of claim 1, wherein the programmable
device is adapted to process different amounts of configu
ration data received from different SPI serial memory
devices.

9. The invention of claim 8, wherein the two or more
different SPI serial memory devices are of two or more
different sizes capable of storing the different amounts of the
configuration data.

10

15

25

30

35

40

45

50

55

60

65

10
10. The invention of claim 8, wherein the programmable

device is adapted to stop including data from an SPI serial
memory device that has already transmitted all of its con
figuration data.

11. The invention of claim 1, wherein the programmable
device comprises:

a multiplexer (muX) adapted to interleave the configura
tion data from the two or more different SPI serial
memory devices; and

a timing controller adapted to control the operations of the
muX and to generate a configuration clock signal used
to control the timing of the reading of the configuration
data from the two or more different SPI serial memory
devices.

12. The invention of claim 11, wherein the timing con
troller is adapted to (1) change the operations of the muX and
(2) change the rate of the configuration clock signal, when
the number of SPI serial memory devices having configu
ration data to transmit changes.

13. The invention of claim 1, wherein each different
portion of the configuration data from the corresponding SPI
serial memory device is received at a different configuration
data input pin of the SPI interface of the programmable
device.

14. The invention of claim 1, wherein each of one or more
output pins of the programmable device is adapted to be
connected to corresponding pins of all of the SPI serial
memory devices.

15. The invention of claim 14, wherein the programmable
device has a configuration clock signal pin adapted to be
connected to corresponding configuration clock signal pins
of all of the SPI serial memory devices such that configu
ration data is transmitted simultaneously from all of the SPI
serial memory devices to the programmable device.

16. The invention of claim 1, wherein the different por
tions of the configuration data are adapted to be simulta
neously transmitted in parallel to the programmable device.

17. An apparatus comprising:
a programmable device having a Serial Peripheral Inter

face (SPI); and
two or more SPI serial memory devices, each having an

SPI interface, wherein:
the SPI interface of the programmable device is con

nected in parallel to the SPI interfaces of the SPI
serial memory devices such that the programmable
device is adapted to receive a different portion of
configuration data stored in each different SPI serial
memory device without transmitting the configura
tion data via a controller connected between the SPI
serial memory devices and the programmable
device.

18. The invention of claim 17, wherein the different
portions of the configuration data are adapted to be simul
taneously transmitted in parallel to the programmable
device.

19. A method for configuring a programmable device,
comprising:

reading a different portion of configuration data from a
Serial Peripheral Interface (SPI) of each of two or more
different SPI serial memory devices connected in par
allel to an SPI interface of the programmable device
without transmitting the configuration data via a con
troller connected between the SPI serial memory
devices and the programmable device; and

configuring the programmable device using the configu
ration data.

US 7,095,247 B1
11

20. The invention of claim 19, wherein the different
portions of the configuration data are simultaneously trans
mitted in parallel to the programmable device.

21. A programmable device adapted to be connected in
parallel to two or more memory devices such that the
programmable device is adapted to receive configuration
data stored in the two or more memory devices without
transmitting the configuration data via a controller con
nected between any of the memory devices and the pro
grammable device, wherein the programmable device is
adapted to receive a different portion of the configuration
data from each different memory device, and wherein one or
more of (a)-(i):

(a) the programmable device has an SPI interface;
each memory device is an SPI serial memory device

having an SPI interface; and
the SPI interface of each SPI serial memory device is

connected to the SPI interface of the programmable
device;

(b) the programmable device is adapted to independently
generate at least one command adapted to control
operations of the memory devices during configuration
of the programmable device;

(c) the programmable device is adapted to generate a
message to inform the memory devices of a starting
address to be used to transfer the configuration data
stored in the memory devices to the programmable
device;

(d) the programmable device is adapted to receive instruc
tions to ignore data from a memory device;

(e) the programmable device is adapted to be instructed,
based on information contained in the configuration
data, as to how to interpret the different portions of the
configuration data received from the different memory
devices;

(f) the programmable device is adapted to process differ
ent amounts of configuration data received from dif
ferent memory devices;

(g) the programmable device comprises:
a multiplexer (muX) adapted to interleave the configu

ration data from the two or more different memory
devices; and

a timing controller adapted to control the operations of
the muX and to generate a configuration clock signal
used to control the timing of the reading of the
configuration data from the two or more different
memory devices;

(h) each different portion of the configuration data from
the corresponding memory device is received at a
different configuration data input pin of the program
mable device; and

(i) each of one or more output pins of the programmable
device is adapted to be connected to corresponding pins
of all of the memory devices; and
the programmable device has a configuration clock

signal pin adapted to be connected to corresponding
configuration clock signal pins of all of the memory
devices such that configuration data is transmitted
simultaneously from all of the memory devices to the
programmable device.

22. The invention of claim 21, wherein:
the programmable device has an SPI interface;
each memory device is an SPI serial memory device

having an SPI interface; and
the SPI interface of each SPI serial memory device is

connected to the SPI interface of the programmable
device.

10

15

25

30

35

40

45

50

55

60

65

12
23. The invention of claim 21, wherein the programmable

device is adapted to independently generate the at least one
command adapted to control the operations of the memory
devices during the configuration of the programmable
device.

24. The invention of claim 21, wherein the programmable
device is adapted to generate the message to inform the
memory devices of the starting address to be used to transfer
the configuration data stored in the memory devices to the
programmable device.

25. The invention of claim 21, wherein the programmable
device is adapted to receive the instructions to ignore the
data from the memory device.

26. The invention of claim 25, wherein the programmable
device is adapted to retrieve the instructions from the
configuration data.

27. The invention of claim 21, wherein the programmable
device is adapted to be instructed, based on the information
contained in the configuration data, as to how to interpret the
different portions of the configuration data received from the
different memory devices.

28. The invention of claim 21, wherein the programmable
device is adapted to process the different amounts of con
figuration data received from the different memory devices.

29. The invention of claim 28, wherein the two or more
different memory devices are of two or more different sizes
capable of storing the different amounts of the configuration
data.

30. The invention of claim 28, wherein the programmable
device is adapted to stop including data from a memory
device that has already transmitted all of its configuration
data.

31. The invention of claim 21, wherein the programmable
device comprises:

the multiplexer (muX) adapted to interleave the configu
ration data from the two or more different memory
devices; and

the timing controller adapted to control the operations of
the muX and to generate the configuration clock signal
used to control the timing of the reading of the con
figuration data from the two or more different memory
devices.

32. The invention of claim 31, wherein the timing con
troller is adapted to (1) change the operations of the muX and
(2) change the rate of the configuration clock signal, when
the number of memory devices having configuration data to
transmit changes.

33. The invention of claim 21, wherein each different
portion of the configuration data from the corresponding
memory device is received at a different configuration data
input pin of the programmable device.

34. The invention of claim 21, wherein each of one or
more output pins of the programmable device is adapted to
be connected to corresponding pins of all of the memory
devices, wherein the programmable device has the configu
ration clock signal pin adapted to be connected to the
corresponding configuration clock signal pins of all of the
memory devices such that the configuration data is trans
mitted simultaneously from all of the memory devices to the
programmable device.

35. The invention of claim 21, wherein the different
portions of the configuration data are adapted to be simul
taneously transmitted in parallel to the programmable
device.

36. An apparatus comprising:
a programmable device; and
two or more memory devices, wherein:

US 7,095,247 B1
13

the programmable device is connected in parallel to
each memory device Such that the programmable
device is adapted to receive configuration data stored
in the two or more memory devices without trans
mitting the configuration data via a controller con
nected between any of the memory devices and the
programmable device, wherein the programmable
device is adapted to receive a different portion of the
configuration data from each different memory
device, and wherein one or more of (a)-(i):

(a) the programmable device has an SPI interface;
each memory device is an SPI serial memory device

having an SPI interface; and
the SPI interface of each SPI serial memory device is

connected to the SPI interface of the programmable
device;

(b) the programmable device is adapted to independently
generate at least one command adapted to control
operations of the memory devices during configuration
of the programmable device;

(c) the programmable device is adapted to generate a
message to inform the memory devices of a starting
address to be used to transfer the configuration data
stored in the memory devices to the programmable
device;

(d) the programmable device is adapted to receive instruc
tions to ignore data from a memory device;

(e) the programmable device is adapted to be instructed,
based on information contained in the configuration
data, as to how to interpret the different portions of the
configuration data received from the different memory
devices;

(f) the programmable device is adapted to process differ
ent amounts of configuration data received from dif
ferent memory devices;

(g) the programmable device comprises:
a multiplexer (muX) adapted to interleave the configu

ration data from the two or more different memory
devices; and

a timing controller adapted to control the operations of
the muX and to generate a configuration clock signal
used to control the timing of the reading of the
configuration data from the two or more different
memory devices;

(h) each different portion of the configuration data from
the corresponding memory device is received at a
different configuration data input pin of the program
mable device; and

(i) each of one or more output pins of the programmable
device is adapted to be connected to corresponding pins
of all of the memory devices; and
the programmable device has a configuration clock

signal pin adapted to be connected to corresponding
configuration clock signal pins of all of the memory
devices such that configuration data is transmitted
simultaneously from all of the memory devices to the
programmable device.

37. The invention of claim 36, wherein the different
portions of the configuration data are adapted to be simul
taneously transmitted in parallel to the programmable
device.

38. A method for configuring a programmable device,
comprising:

simultaneously reading configuration data from two or
more memory devices connected in parallel to the
programmable device without transmitting the configu
ration data via a controller connected between any of
the memory devices and the programmable device,

10

15

25

30

35

40

45

50

55

60

65

14
wherein the programmable device receives a different
portion of the configuration data from each different
memory device; and

configuring the programmable device using the configu
ration data, wherein one or more of (a)-(i):

(a) the programmable device has an SPI interface;
each memory device is an SPI serial memory device

having an SPI interface; and
the SPI interface of each SPI serial memory device is

connected to the SPI interface of the programmable
device;

(b) the programmable device is adapted to independently
generate at least one command adapted to control
operations of the memory devices during configuration
of the programmable device;

(c) the programmable device is adapted to generate a
message to inform the memory devices of a starting
address to be used to transfer the configuration data
stored in the memory devices to the programmable
device;

(d) the programmable device is adapted to receive instruc
tions to ignore data from a memory device;

(e) the programmable device is adapted to be instructed,
based on information contained in the configuration
data, as to how to interpret the different portions of the
configuration data received from the different memory
devices;

(f) the programmable device is adapted to process differ
ent amounts of configuration data received from dif
ferent memory devices;

(g) the programmable device comprises:
a multiplexer (muX) adapted to interleave the configu

ration data from the two or more different memory
devices; and

a timing controller adapted to control the operations of
the muX and to generate a configuration clock signal
used to control the timing of the reading of the
configuration data from the two or more different
memory devices;

(h) each different portion of the configuration data from
the corresponding memory device is received at a
different configuration data input pin of the program
mable device; and

(i) each of one or more output pins of the programmable
device is adapted to be connected to corresponding pins
of all of the memory devices; and
the programmable device has a configuration clock

signal pin adapted to be connected to corresponding
configuration clock signal pins of all of the memory
devices such that configuration data is transmitted
simultaneously from all of the memory devices to the
programmable device.

39. A programmable device comprising a Serial Periph
eral Interface (SPI) adapted to be connected to an SPI
interface of at least one SPI serial memory device such that
the programmable device is adapted to receive configuration
data stored in the SPI serial memory device without trans
mitting the configuration data via a controller connected
between the SPI serial memory device and the program
mable device, wherein the programmable device is adapted
to receive instructions to ignore data from an SPI serial
memory device.

40. The invention of claim 39, wherein the programmable
device is adapted to retrieve the instructions from the
configuration data.

